
Setting up a Disk Wiping Operation with OpenBSD
Jim Brown, jpb@jimby.name, July 27, 2014

Introduction

Recently, I was faced with having to wipe a large number of disks that contained private information.
The disks were mounted inside specialized hardware which made removing the disks somewhat
difficult. The systems were older vintage x86 systems, circa 2000-2004 with some even older.
Network interfaces were available, but there was no internal CD/DVD or floppy disk – only USB. And
even though there were USB interfaces, the BIOS did not allow booting from USB.

In addition, the wiping had to be performed with a minimum of personnel, the inventory of all disks
had to be strictly accounted for, and the evidence that wiping was thorough and complete had to be
maintained. Oh- and did I mention that all of this had to cost the minimum possible?

Of course, Darik's famous Boot and Nuke (DBAN) came to mind, but in this case, it wasn't really
usable unless the disks were removed from the system and wiped on a different machine. This was
possible, but tedious. I started to contemplate a solution that I could use PXE and some simple
scripting and realized that OpenBSD is ideal for this – PXE is well supported and the install program
is a shell script.

I decided to try PXE booting, using the bsd.rd boot image and ksh scripting to see if I could find a way
to wipe the disks without removing them from the system. I set up a PXE boot virtual server, and a set
up another virtual image to boot from the network. PXE booting worked fine, and the required bsd.rd
boot file was loaded and executed. I won't spend time on describing the DHCP/TFTP setup used as
there are a number of good tutorials on setting these up for PXE booting. Check the man pages first.

Illustration 1 shows the OpenBSD bsd.rd install script with the “(I)nstall, (U)pgrade, (S)hell” option
prompt. I selected (S)hell and used “dd if=/dev/zero of=/dev/rwd0c bs=1m” to wipe the drive. While
this worked, I discovered that I didn't really have a way to show that the disk was, in fact, wiped with
zeros. I'm technically inclined enough to know that it is wiped, but I can't show that fact to an auditor.
The hexdump(1) utility is ideal for this, but it is not on the default ram disk on the boot media
(Illustration 2). Some customization was necessary.

Illustration 2: Successfully Wiped, but No
Verification Available

Illustration 1: OpenBSD Install Script and Disk
Wiping via the Install Shell

The source code for the install script is located in /usr/src/distrib/miniroot in the file dot.profile. This
file gets renamed during the build process to .profile and it is called during the install. While it is
possible to hack that file directly, a more flexible solution is to create a separate script and have it
called by dot.profile. This solution is shown in Illustration 3.

The drive wiping module is set up as a separate option on the dot.profile install prompt. Selecting that
option runs the wipeandverify script as shown in Illustrations 4 and 5. Illustration 5 shows how the 'v'
option was selected to actually verify the drive wiped earlier.

To verify a wiped drive, hexdump(1) was run with the '-C' option which shows the canonical output
format. As noted in the manual page, “... any number of groups of output lines, which would be
identical to the immediately preceding group of output lines (except for the input offsets), are replaced
with a line comprised of a single asterisk (‘*’)”, so the output of hexdump shows all zeros from the
first byte of the drive to the last. In addition, the drive serial number is displayed. By copying,
photographing, or printing this screen, you have proof enough to satisfy any auditor that a specific
drive was completely overwritten with zeros.

The previous illustrations have all been screen shots from a virtual machine. Illustration 6 is a camera
photo from a real machine.

Illustration 3: Modified dot.profile Install Script
Showing Wipe Module

Illustration 4: Verifying a Wiped Drive

Illustration 5: Proof of Drive Wiping with
hexdump(1)

Illustration 6: Camera Image of a Wiped
Drive

Customizations

To set all this up several customizations were necessary. The following lists of tasks will suffice to get
you started on a similar setup:

• Download the OpenBSD source code and follow the directions for building a release as noted in
Section 5 of the OpenBSD FAQ.

• Make a backup copy of the /usr/src/distrib/miniroot directory. Most of the action happens in
this directory.

• Customize the file dot.profile to add the menu option as shown below:

 # Installing or upgrading?
 cat <<__EOT

Welcome to the $OBSD installation program.
__EOT
 while :; do
 read REPLY?'(I)nstall, (U)pgrade, (S)hell, or (W)(V)(R) Module: '
 case $REPLY in
 i*|I*) /install && break
 ;;
 u*|U*) /upgrade && break
 ;;
 w*|W*|v*|V*|r*|R*) /wipeandverify && break
 ;;
 s*|S*) break
 ;;
 !) echo "Type 'exit' to return to install."
 ksh
 ;;
 !*) eval "${REPLY#?}"
 ;;
 esac
 done
fi

• Create the file wipeandverify.sh as shown below. While the standard file copyright statement is
not shown for brevity, you should include it in your file. This new script builds upon the work
of Todd Miller, Theo de Raadt, Ken Westerback, Jason R. Thorpe, and possibly others.
Remember that this is a Korn shell script, so include the she-bang line #!/bin/ksh at the top.

#!/bin/ksh
[Standard copyrights here...]
OpenBSD Wipe and Verify Script. Copyright (c) 2014 by Jim Brown

(cd /dev/ && /bin/sh /dev/MAKEDEV random)

while :; do

 echo "Available drives:"
 echo
 dmesg | grep "^[ws]d[0-9][0-9]*:"
 echo
 read MYDEV?'Enter drive you want to wipe/randomize/verify/ (wd0, sd1, etc): '

 MYRAWDEV="/dev/r${MYDEV}c"
 echo "Ready to act on drive ${MYRAWDEV}"
 echo

 read REPLY?' (W)ipe drive, (R)andomize drive, (V)erify drive, (E)xit: '
 case $REPLY in
 w*|W*) echo "Wiping $MYRAWDEV ..."
 echo "Use Ctl-T to view progress"
 echo "dd if=/dev/zero of=${MYRAWDEV} bs=1m"
 dd if=/dev/zero of=${MYRAWDEV} bs=1m
 ;;
 r*|R*) echo "Randomizing $MYRAWDEV ..."
 echo "Use Ctl-T to view progress"
 echo "dd if=/dev/random of=${MYRAWDEV} bs=1m"
 dd if=/dev/random of=${MYRAWDEV} bs=1m
 ;;
 v*|V*) echo "Verifying $MYRAWDEV ..."
 echo
 echo "Try NOT to use Ctl-T to save real estate."
 echo "dd if=${MYRAWDEV} bs=1m | hexdump -C"
 dd if=${MYRAWDEV} bs=1m | hexdump -C
 echo "The following disk has been completely wiped:"
 echo
 echo $MYRAWDEV | grep "/dev/rwd" > /dev/null
 if [$? -eq 0] ; then
 atactl $MYDEV identify | grep -i serial ;
 else
 bioctl -q $MYDEV ;
 fi
 echo
 ;;
 e*|E*) echo "Exiting"
 break
 ;;
 esac

done

Sharp-eyed readers will have noticed that the script also has an '(R)(r)' option. The script also
handles randomization – i.e. filling the disk with completely random data. It does this by
using /dev/random instead of /dev/zero as the input source to the dd command. However,
/dev/random is not installed by bsd.rd , so this script creates it as shown on the first line.

• There are a few more customizations necessary to get this script installed in the bsd.rd miniroot
ram disk so it can be used. The machinery for building the miniroot ram disk is embedded in
the release building scripts. To include this new script, hexdump, and atactl, modify three files
that are used to specify the programs to be included in a release:

/usr/src/distrib/i386/common/list
/usr/src/distrib/miniroot/list
/usr/src/distrib/ramdisk/list

(Note that this is for the i386 architecture but in theory, it should work with any supported
architecture.)

Add the following lines in their respective sections.

LINK instbin sbin/atactl

LINK instbin usr/bin/hexdump

SCRIPT ${CURDIR}/../../miniroot/wipeandverify.sh wipeandverify

and modify this existing line:

SPECIAL chmod 755 install upgrade wipeandverify

• Next, build another release. However this time, the build may fail on the final assembly of
bsd.rd, so use the following lines to build the release

cd /usr/src/etc
make -k release

The '-k' option will allow the make to finish if there are no significant errors on the primary
target.

If all goes well, the final output should look something like this:

The new bsd.rd (in /usr/rel or wherever you pointed your RELEASEDIR variable) now
contains all the modifications needed.

Finally, move this file into your TFTP boot file location and you are ready to go.

Illustration 7: Completed "make -k release" Build With
Modified bsd.rd

	Setting up a Disk Wiping Operation with OpenBSD
	Introduction
	Customizations

