Setting up a Disk Wiping Operation with OpenBSD
Jim Brown, jpb@jimby.name, July 27, 2014

Introduction

Recently, I was faced with having to wipe a large number of disks that contained private information.
The disks were mounted inside specialized hardware which made removing the disks somewhat
difficult. The systems were older vintage x86 systems, circa 2000-2004 with some even older.

Network interfaces were available, but there was no internal CD/DVD or floppy disk — only USB. And
even though there were USB interfaces, the BIOS did not allow booting from USB.

In addition, the wiping had to be performed with a minimum of personnel, the inventory of all disks
had to be strictly accounted for, and the evidence that wiping was thorough and complete had to be
maintained. Oh- and did I mention that all of this had to cost the minimum possible?

Of course, Darik's famous Boot and Nuke (DBAN) came to mind, but in this case, it wasn't really
usable unless the disks were removed from the system and wiped on a different machine. This was
possible, but tedious. I started to contemplate a solution that I could use PXE and some simple

scripting and realized that OpenBSD is ideal for this — PXE is well supported and the install program
is a shell script.

I decided to try PXE booting, using the bsd.rd boot image and ksh scripting to see if I could find a way
to wipe the disks without removing them from the system. I set up a PXE boot virtual server, and a set
up another virtual image to boot from the network. PXE booting worked fine, and the required bsd.rd
boot file was loaded and executed. I won't spend time on describing the DHCP/TFTP setup used as
there are a number of good tutorials on setting these up for PXE booting. Check the man pages first.

[lustration 1 shows the OpenBSD bsd.rd install script with the “(I)nstall, (U)pgrade, (S)hell” option
prompt. I selected (S)hell and used “dd if=/dev/zero of=/dev/rwdOc bs=1m” to wipe the drive. While
this worked, I discovered that I didn't really have a way to show that the disk was, in fact, wiped with
zeros. I'm technically inclined enough to know that it is wiped, but I can't show that fact to an auditor.
The hexdump(1) utility is ideal for this, but it is not on the default ram disk on the boot media
(I1lustration 2). Some customization was necessary.

sdisplay® at vgal mux 1: console (80x25, vt100 emulation)
em® at pci® dev 3 function @ "Intel 82540EM” rev Ox02: irq 10, address 08:00:27:

isadma® at isa®

jockbcO at isa® port Ox60-5

lpckbd® at pckbc® (kbd slot)

pckbc®: using irg 1 for kbd slot

skbd® at pckbd®: console keyboard, using wsdisplay®
npx® at isa® port OxfO-16: reported by CPUID: using exception 16
1sbO at ohci®: USB revision 1.0

thub® at usb® "Apple OHCI root hub" rev 1.00/1.00 addr 1
jsof traid® at root

lscsibusl at softraid®: 256 targets

root on rd@a swap on rdOb dump on rdOb

erase *7, werase "W, kill “U, intr “C, status "T

"InnoTek VirtwalBox Guest Service"” rev 9x00 at pci® dev 4 fuwnction @ not configu|
fred

"Intel B2801AA ACI?" rev BxB1 at pcid® dev 5 function @ wot configured
ohci@ at pci® dev 6 function © "Apple Intrepid USB” rev ©x00: irg 11, version 1.

"Intel B2371AB Power"” rev Ox08 at pci® dev 7 function O not configured
iza® at pcib@

isadma® at isa@

jpckbc® at isa® port Ox60,5

[pckbd® at pckbc® (kbd slot)

Jockbe®: using irg 1 for kbd slot

skbd® at pckbd®: console keyboard, using wsdisplay®

npx@ at isa® port Oxf0,/16: reported by CPUID: using exception 16
1sh® at ohci®: USB rewvision 1.0

thub® at usb® “Apple OHCI root hub” rev 1.00/1.00 addr 1

jsof traid® at root

jscsibusl at softraid®: 256 targets

root on rd@a swap on rd® dump on rd@b

erase “?, werase “W, kill “U, intr °C, status *T

elcome to the OpenBSD,i3B6 5.4 installation program.
(I)nstall, (Wpgrade or (S)hell? s

jt dd if =-devs/zero of=s/dev/rwdBc bs=1m
d: sdevsrwd@c: end of device
[£0481+0 records in
2.0480+0 records out
21474836480 bytes transferred in 85.079 secs (252408180 bytesssec)

jt hexdump -C
elcome to the OpenBSD~i3B6 5.4 installation program. sh: hexdump: not found
(IJnstall, (U)pgrade or (S)hell?

Hlustration 1: OpenBSD Install Script and Disk 1llustration 2: Successfully Wiped, but No
Wiping via the Install Shell Verification Available

The source code for the install script is located in /usr/src/distrib/miniroot in the file dot.profile. This
file gets renamed during the build process to .profile and it is called during the install. While it is
possible to hack that file directly, a more flexible solution is to create a separate script and have it
called by dot.profile. This solution is shown in Illustration 3.

cat <<__EOT jpckbd® at pckbc® (kbd slot)

pckbc®: using irgq 1 for kbd slot

skbd® at pckbd®: console keyboard, using wsdisplay®
npxQ@ at isa® port OxfO/16: reported by CPUID: using exception 16
1shQ at ohcid: USB revision 1.0

thub® at ush® "Apple OHCI root hub" rev 1.00,1.00 addr 1
jsoftraid® at root

jscsibus4 at softraid®: 256 targets

[PXE boot MAC address 08:00:27:ee:02:82, interface em@®
jroot on rd®a swap on rd@b dump on rd@b

erase 7, werase "MW, kill "U, intr °C, status °T

elcome to the S0BSD installation program.
_EOT
while :; do
read REPLY?’ (IJnstall, (Upgrade, (S)hell, or (W)(U)(R) Module:

case SREPLY in
ixiIx) sinstall && break

uxilx) supgrade && break

e b rxiRx) swipeandverify && break elcome to the OpenBSD/i386 5.4 installation program.
il (IJnstall, (UWpgrade, (S)hell, or (WICU)I(R) Module: v
s%i8=) break Available drives:

echo “Type ‘exit’ to return to install.”
ksh

d@: 128-sector PIO, LBA, 819ZMB, 16777216 sectors
jsd0: 5120MB, 512 bytesssector, 10485760 sectors

B [sd1: 5120MB, 512 bytesssector, 10485760 sectors

eval "S{REPLYH?}" jsd2: 5120MB, 512 bytes/sector, 10485760 sectors

[Enter drive you want to wipesrandomizesverifys (wd@, sdl, etc):
[Rieady to act on drive /devw/rud®c

(Wipe drive, (Rlandomize drive, (Verify dreive, (E)xit: v

Hllustration 3: Modified dot.profile Install Script Illustration 4: Verifying a Wiped Drive
Showing Wipe Module

The drive wiping module is set up as a separate option on the dot.profile install prompt. Selecting that
option runs the wipeandverify script as shown in Illustrations 4 and 5. Illustration 5 shows how the 'v'
option was selected to actually verify the drive wiped earlier.

To verify a wiped drive, hexdump(1) was run with the '-C' option which shows the canonical output
format. As noted in the manual page, “... any number of groups of output lines, which would be
identical to the immediately preceding group of output lines (except for the input offsets), are replaced
with a line comprised of a single asterisk (‘*’)”, so the output of hexdump shows all zeros from the
first byte of the drive to the last. In addition, the drive serial number is displayed. By copying,
photographing, or printing this screen, you have proof enough to satisfy any auditor that a specific
drive was completely overwritten with zeros.

[Ready to act on drive sdev/rwdGc

(Wripe drive, (Rlandomize drive, (Werify drive, (E)xit: v
erifying sdevsrwd@c ...

ry NOT to use Ctl-T to save real estate.

d if=s/devsrwd@c bs=1m | hexdump -C {
NOEEOEEO 00 00 00 00 60 00 00 O 00 00 00 00 60 00 00 00 lev/rudfc bs-1n
[3192+0 records in

[8192+0 records out

8589934592 bytes transferred in ?9.353 secs (108248372 bytesssec)

266 transferred in 2789.232 @
AfB8£99008 secs (21515472 bytes/sec)

The following disk has been conpletely wiped :

he following disk has been completely wiped:

lodel: UBOX HARDDISK, Rev: 1.0, Serial #: UB6d595ded-7d5cS0ee
Model : TOSHIBA MKGB34GAX, Rev: AC1B1A, Serial #:
Aivailable drives:
flvailable drives:
d0: 128-sector PI0, LBA, 819ZMB, 16777216 sectors
j=d@: 5120MB, 512 bytes/sector, 10485760 sectors
jsd1: 5120MB, 512 bytes-sector, 10485760 sectors
jsd2: 5120MB, 512 bytesssector, 10485760 sectors

d6: 16-sector PI0, LBA48, 57231MB, 117218248 sectors

nter drive you want to wipe/randonizesverify/ (wd@, sdl, etc): z_

[Enter drive you want to wipesrandomizerverify, (wd0, sdil, etc):
[llustration 5. Proof of Drive Wiping with lllustration 6: Camera Image of a Wiped
hexdump(1) Drive

The previous illustrations have all been screen shots from a virtual machine. Illustration 6 is a camera
photo from a real machine.

Customizations

To set all this up several customizations were necessary. The following lists of tasks will suffice to get
you started on a similar setup:

* Download the OpenBSD source code and follow the directions for building a release as noted in

Section 5 of the OpenBSD FAQ.
* Make a backup copy of the /usr/src/distrib/miniroot directory. Most of the action happens in

this directory.
* Customize the file dot.profile to add the menu option as shown below:

Installing or upgrading?
cat <<_ EOT

Welcome to the $OBSD installation program.

__EOT
while :; do
read REPLY?' (I)nstall, (U)pgrade, (S)hell, or (W) (V) (R) Module: '
case SREPLY in
i*|I%) /install && break
u*|U*) /upgrade && break
w* |W* |v* |V*|r*|R*) /wipeandverify && break
s*|S*) break
1) echo "Type 'exit' to return to install."
ksh
1%) eval "S{REPLY#?2}"
esac
done
fi

* Create the file wipeandverify.sh as shown below. While the standard file copyright statement is
not shown for brevity, you should include it in your file. This new script builds upon the work
of Todd Miller, Theo de Raadt, Ken Westerback, Jason R. Thorpe, and possibly others.
Remember that this is a Korn shell script, so include the she-bang line #!/bin/ksh at the top.

#!/bin/ksh
[Standard copyrights here...]
OpenBSD Wipe and Verify Script. Copyright (c) 2014 by Jim Brown

(cd /dev/ && /bin/sh /dev/MAKEDEV random)
while :; do

echo "Available drives:"

echo

dmesg | grep " [ws]d[0-9][0-9]*:"

echo

read MYDEV?'Enter drive you want to wipe/randomize/verify/ (wdO, sdl, etc): '

MYRAWDEV="/dev/r$ {MYDEV}c"
echo "Ready to act on drive ${MYRAWDEV}"
echo

done

read REPLY?' (W)ipe drive, (R)andomize drive, (V)erify drive, (E)xit: '
case SREPLY in
w* |W*) echo "Wiping $MYRAWDEV ..."
echo "Use Ctl-T to view progress"
echo "dd if=/dev/zero of=${MYRAWDEV} bs=1m"
dd if=/dev/zero of=${MYRAWDEV} bs=1m
r*|R*) echo "Randomizing S$MYRAWDEV ..."
echo "Use Ctl-T to view progress"
echo "dd if=/dev/random of=${MYRAWDEV} bs=1m"
dd if=/dev/random of=${MYRAWDEV} bs=1lm
v*|V*) echo "Verifying SMYRAWDEV ..."
echo
echo "Try NOT to use Ctl-T to save real estate."
echo "dd i1if=${MYRAWDEV} bs=1lm | hexdump -C"
dd if=${MYRAWDEV} bs=1lm | hexdump -C
echo "The following disk has been completely wiped:"

echo
echo $SMYRAWDEV | grep "/dev/rwd" > /dev/null
if [$?2 -eq 0] ; then

atactl $MYDEV identify | grep -i serial ;
else

bioctl -g $MYDEV ;
fi
echo

e*|E*) echo "Exiting"
break
i

esac

Sharp-eyed readers will have noticed that the script also has an '(R)(r)' option. The script also
handles randomization — i.e. filling the disk with completely random data. It does this by
using /dev/random instead of /dev/zero as the input source to the dd command. However,
/dev/random is not installed by bsd.rd , so this script creates it as shown on the first line.

There are a few more customizations necessary to get this script installed in the bsd.rd miniroot

ram disk so it can be used. The machinery for building the miniroot ram disk is embedded in
the release building scripts. To include this new script, hexdump, and atactl, modify three files
that are used to specify the programs to be included in a release:

/usr/src/distrib/i386/common/list
/usr/src/distrib/miniroot/list
/usr/src/distrib/ramdisk/list

(Note that this is for the 1386 architecture but in theory, it should work with any supported
architecture.)

Add the following lines in their respective sections.

LINK instbin sbin/atactl
LINK instbin usr/bin/hexdump

SCRIPT ${CURDIR}/../../miniroot/wipeandverify.sh wipeandverify

and modify this existing line:

SPECIAL chmod 755 install upgrade wipeandverify

Next, build another release. However this time, the build may fail on the final assembly of

bsd.rd, so use the following lines to build the release

cd /usr/src/etc
make -k release

The '-k' option will allow the make to finish if there are no significant errors on the primary

target.

If all goes well, the final output should look something like this:

> not remade because of errors.
i386rcdfs
i386-cdf s—emu
special
notes
INSTALL.i386 ~usrsrel
> i386
» i3Bosramdisk_cd
bsd.rd susr-/rel-bsd.rd
=» i386sramdiskf
floppy54.fs cusrsrel-floppy54.fs
=» i3Bb/ramdiskB
floppyB54.fs ~usrsrel floppyB5S4.fs
=» i3B6 ramdiskC
floppyC54.fs ~usr-/rel-floppyC54.fs
=» i3Bbrcdfs
p cd54.iso ~usr-rel
===> i3B6scdfs-emu
p cdemud4.iso susrsrel
d susrsrel: sum -a sha256 INSTALL.'arch -ks® bsd bsd.mp bsd.rd cd54.iso cdemuS
1 floppy54.fs floppyBS54.fs floppyCS4.fs pxeboot cdboot cdbr INSTALL.linux
base54.tgz compS54.tgz manS54.tgz gameS4.tgz etc5S4.tgz > SHAZS6
pud
usr-src/etc

Hllustration 7: Completed "make -k release" Build With
Modified bsd.rd

The new bsd.rd (in /usr/rel or wherever you pointed your RELEASEDIR variable) now

contains all the modifications needed.

Finally, move this file into your TFTP boot file location and you are ready to go.

	Setting up a Disk Wiping Operation with OpenBSD
	Introduction
	Customizations

