Specifying the Order of Files on a DVD - Without the Knife

Jim Brown, BSDCG

jimbyg@gmail.com
Sept. 15, 2016

Every once in a while, you run across a problem that seems intractable — a real ball buster. You study
it, google about it, ask friends and colleagues, rip out your hair, curse deities on multiple planets, and
still you find yourself no closer to a solution. Occasionally, you'll hit on a workaround for one of these
zingers, but you know it's not the solution you really need. As it happens, I just found the perfect
solution for one of mine.

For the past several years, I have been producing the BSD Certification Group's study DVD. These
DVDs include four operating systems on one disc and include an 'El Torito' boot loader, allowing any
of the four to be booted to their installation program. Every time I begin my round up of the latest
releases of DragonFly BSD, FreeBSD, NetBSD and OpenBSD, I dread the usual fight with each
operating system. Producing these DVDs requires code changes to the boot and installer programs for
each BSD. I've gotten them to work by modifying and recompiling the code, and staging them for use
with the mkisofs(8) pre-mastering program. Usually, the easiest to change is OpenBSD — and it's also
the most frustrating to get to work reliably. I sometimes spend many hours in a kungfu-voodoo-knife
fight getting it to work.

Here's why. Figure 1 has a a simplified linear layout of the most recent DVD. The ELTORO" boot
loader is at the beginning of the disc, with various ISO 9660 components after that. The first operating
system starts at around 22M into the DVD. I've shown a “lexicographic order” (lexi order) of the
operating systems on the disc, and this was the desired original layout. It turns out that this didn't work
and hasn't worked for quite some time.

CDITIpDrIE.‘rItS (OpenBSD)

‘(Esoot Selection] ELTORO)
_7From Menuw \ Boot Loader L —2oM
= ELTORO Various 1SO 9660 ‘
Boot Loader L —ooM components
Various 1SO 9660 /C5.8

- ~1626M
IF10.2 1 /F10.2
| (GEEERD)) 1313M (FreeBSD) |
IN7.0 L IN7.0 L
37 (NetgsD) | T37OM

(OpenBSD)

/05.8 L~
1178M Fig. 2 - Reordering OpenBSD by Renaming the Directory

Fig. 1 - Simplified Layout on DVD

OpenBSD's cdboot(8) loader has a signed variable somewhere causing it to not be able to read the
boot.conf configuration file or load the kernel if the start of the OpenBSD code is past the ~2.1G
(2,147,483,647 bytes to be exact) signed 32-bit integer boundary. Thus, when the order is that shown

1 The “ElToro” CD/DVD boot manager. Copyright © 2006 by Oliver Fromme. Used by permission.

mailto:jimbyg@gmail.com

in Figure 1 and OpenBSD is selected, cdboot can't find the kernel and it won't load.

Thinking myself clever, I renamed the directory for the OpenBSD distribution to “C5.8”, thus aiming
to have it written earlier to disc as shown in Figure 2. I have used this same technique for the last four
or five DVDs — always renaming the OpenBSD directory to be C5.x and (eventually) getting the DVD
created. Once I win the fight and get all four BSDs to boot and install, I quickly get the DVD burned
and copied. By this time, I'm so agitated at having OpenBSD start to work then fail to work then start
to work again, that I just want to stop, so I stop.

But why is it always such a pain? What is causing OpenBSD to work sometimes, and — even with my
“clever” reordering — not work other times, often just an hour or two later fighting with all the other
BSDs?

The answer is not in OpenBSD at all. It's in the implementation of mkisofs(8) — the .iso pre-mastering
program.

mkisofs(8), part of the cdrtools® bundle, is a terrific program for making .iso files. You just point it at a
directory with a few options, and bam! it creates a .iso file ready for mastering. mkisofs(8) has a large
number of options allowing fine grained control over including/excluding files and directories, Joliet
and Rock Ridge file name mangling, publishing details, boot files, and many other items.

When you ask mkisofs(8) to create a .iso file, it scans through the files you selected and sets the data
blocks for these files in order to be written to the output .iso file. Since we see files and directories and
list their contents all the time, we intuitively think that mkisofs(8) will put them in lexi order as 1s(1)
does by default. But — it does not.

mkisofs(8) uses an internal implementation of find(1) to select the files and data blocks, and it orders
them in a depth-first traversal. It's equivalent to running find(1) on a directory with the parameters “-
type d” (which appears to be the default on many systems). And the important detail here is that
mkisofs(8) takes sub-directories in order as they appear in the current directory, which can vary if
the filesystem code reorders the entries in a directory.’

Consider the following list of sub-directories:

1s -al

total 11

drwxr-xr-x 7 root jpb 7 Sep 10 20:31 .

drwxrwxrwx 5 root Jjpb 14 Sep 10 20:31 ..
drwxr-xr-x 2 root Jpb 3 Sep 10 15:17 A
drwxr-xr-x 3 root Jjpb 3 Sep 10 15:10 B

drwxr-xr-x 3 root Jjpb 3 Sep 10 15:10 C
drwxr-xr-x 3 root Jjpb 3 Sep 10 15:10 D

drwxr-xr-x 3 root Jpb 3 Sep 10 15:10 E

#

The 1s(1) command has, by default, output them in lexi order. The '-f' option will cancel that ordering

2 Homepage at http://cdrtools.sourceforge.net/private/cdrecord.html, currently maintained by Joérg Schilling.

3 Jorg notes: “The ISO-9660 directories are all sorted as required by the standard. Your text seems to create a different impression. The
order of data blocks on the medium is what you really refer to, so the example with the directory more or less confuses the reader.
You may like to modify your text to make it obvious that you are not talking about directories.”

http://cdrtools.sourceforge.net/private/cdrecord.html

resulting in:

1s -alf

total 11

drwxr-xr-x 7 root Jpb 7 Sep 10 20:31
drwxrwxrwx 5 root Jjpb 14 Sep 10 20:31 ..
drwxr-xr-x 3 root Jpb 3 Sep 10 15:10 B
drwxr-xr-x 3 root Jpb 3 Sep 10 15:10 E
drwxr-xr-x 2 root Jpb 3 Sep 10 15:17 A
drwxr-xr-x 3 root Jpb 3 Sep 10 15:10 D
drwxr-xr-x 3 root Jpb 3 Sep 10 15:10 C

#
This is the actual order of these sub-directories within the current directory.

The find(1) command using the “-type d” option (and “-depth 1” to see just the current directory)
results in an unordered listing similar to “Is -alf”

find . -type d -depth 1
./B
./E
./A
./D
./C

It turns out that mkisofs(8) uses this ordering as its default when it gathers data blocks to write them to
the .iso file.

Let's look at some real examples. I've created some sub-directories and some files in these sub-
directories as follows (shown in lexi order):

find . -print | sort
./A

./A/1.bin

./B

./B/two
./B/two/2.bin
./B/two/three
./B/two/three/3.bin
./C

./C/four

./C/four/4 .bin
./C/four/five
./C/four/five/5.bin
./C/four/five/six
./C/four/five/six/6.bin
./D

./D/seven
./D/seven/7.bin

./E

./E/eight
./E/eight/8.bin
./E/eight/nine
./E/eight/nine/9.bin

Each .bin file has 1000 bytes of the character of its base name (2, 3, 4, etc), created with jot(1) as
follows:

for i in 1 2 3 456 7 89
> do

> echo ${i}

> jot -b ${i} -s "" 1000 > ${i}.bin
> done

1

2

3

4

5

6

7

8

9

#

cat 4.bin

444
444
444
444
444
444
444
444
444
444
444
444
44

#

I then manually moved them into the directory named after the number of the .bin file — 2.bin was
moved to the directory ./B/two/, 6.bin was moved into ./C/four/five/six/ and so on.

Side by side, the listed files and directories look much different with the sorted find(1) output and the

(annotated) listing produced by find(1) with the “-type d” parameter.

find . -print | sort find . -type d [annotated]
./A ./B
./A/1.bin ./B/two [2.bin is here]
./B ./B/two/three [3.bin is here]
./B/two ./E
./B/two/2.bin ./E/eight [8.bin is here]
./B/two/three ./E/eight/nine [9.bin is here]
./B/two/three/3.bin ./A [1.bin is here]
./C ./D
./C/four ./D/seven [7.bin is here]
./C/four/4.bin ./C

./C/four/five ./C/four [4.bin is here]
./C/four/five/5.bin ./C/four/five [5.bin is here]
./C/four/five/six ./C/four/five/six [6.bin is here]
./C/four/five/six/6.bin
./D

./D/seven
./D/seven/7.bin

./E

./E/eight
./E/eight/8.bin
./E/eight/nine
./E/eight/nine/9.bin

Running mkisofs(8) on the current directory creates a .iso file as follows:

mkisofs -iso-level 3 -gui -v -R -1 -J -o test_mkisofs.iso

To see the contents in order, use the hd(1) command on the test_mkisofs.iso file:

hd test mkisofs.iso

00000000 00 OO 00 00 00O 00O OO OO 0O OO OO OO0 0O 0O 00 0O P |

*

00008000 01 43 44 30 30 31 01 00 46 72 65 65 42 53 44 20 | .CD001..FreeBSD |

00008010 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 | |

00008020 20 20 20 20 20 20 20 20 43 44 52 4f 44 20 20 20 | CDROM |
| |

00008030 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20
lots of ISO 9660 component content

0001c0b0 4e 54 49 46 49 45 52 20 49 4e 20 50 52 49 44 41 |NTIFIER IN PRIMA|
0001c0cO0 52 59 20 56 4f 4c 55 4d 45 20 44 45 53 43 52 49 |RY VOLUME DESCRI |
0001c0d0 50 54 4f 52 20 46 4f 52 20 43 4f 4e 54 41 43 54 |PTOR FOR CONTACT|
0001c0e0 20 49 4e 46 4f 52 44 41 54 49 4f 4e 2e 00 00 00 | INFORMATION....
0001c0f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.weurweuwenweunnnn.. |
*

0001c800 23 21 2f 62 69 6e 2f 73 68 0a 73 65 74 20 24 78 |#!/bin/sh.set -x|
0001c810 Oa 0Oa 6d 6b 69 73 6f 66 73 20 2d 69 73 6f 2d 6¢ |..mkisofs -iso-1|
0001c820 65 76 65 6¢ 20 33 20 2d 67 75 69 20 2d 76 20 2d |evel 3 -gui -v -|
0001c830 52 20 2d 6¢c 20 2d 4a 20 2d 6f 20 74 65 73 74 5f |R -1 -J -o test_|
0001c840 6d 6b 69 73 6f 66 73 2e 69 73 6f 20 2e 20 Oa 0a |mkisofs.iso . ..|
0001c850 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 |.eeurvenveneunnn.. |

*

00014000 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 |2222222222222222|
*

0001d3e0 32 32 32 32 32 32 32 32 0a 00 00 00 00 00 00 00 [22222222........ |
0001d3f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....uniiunnionn.. |

*

00014800 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 |3333333333333333]|
*

0001dbe0 33 33 33 33 33 33 33 33 0a 00 00 00 00 00 00 00 [33333333........ |
0001dbf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....uniiennnonn.. |

*

0001e000 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 |8888888888888888|
*

000le3e0 38 38 38 38 38 38 38 38 0a 00 00 00 00 00 00 OO |88888888........ |
0001e3f0 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 |.....uniienninonn.. |

*

0001e800 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 [9999999999999999 |
*

000lebe0 39 39 39 39 39 39 39 39 0a 00 00 00 00 00 00 00]99999999........ |
0001ebf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....uniiennionn..

*

0001£000 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 |1111111111111111|
*

0001f3e0 31 31 31 31 31 31 31 31 0Oa 00 00 00 00 00 00 OO [11111111........ |
0001£3f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....vuniienninonnn. |

*

0001£800 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 |7777777777777777|
*

0001fbe0 37 37 37 37 37 37 37 37 0a 00 00 00 00 00 00 00 |77777777........ |
0001fbf0 00 00 00 00 00 00 00 00 0O 00 00 00 00 00 00 00 |..evervenweneunnn..

*

00020000 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 |4444444444444444|
*

000203e0 34 34 34 34 34 34 34 34 0a 00 00 00 00 00 00 00 |44444444........ |
000203f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...eviuniiunninonnn. |

*

00020800 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 |5555555555555555]|

*

00020be0 35 35 35 35 35 35 35 35 0a 00 00 00 00 00 00 00 |55555555........ |
00020bf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....vuniiunninonnn.. |

*

00021000 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 |6666666666666666 |

*

000213e0 36 36 36 36 36 36 36 36 0a 00 00 00 00 00 00 00 |66666666........ |
000213f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |..eviunieunninennn. |

*

0006c800
#

The files are shown in “find . -type d” order within the .iso file. Thus, the times when my OpenBSD
directory “C5.x” was the first BSD on the .iso was not due to lexicographic ordering based on the
filename— it was the chance ordering that “C5.x” was actually the first entry in the directory holding
all four BSDs. That's why it would work sometimes and not work other times.

Ok, not quite as clever as I thought I was. Now — how to fix?

In November, 2001, James Pearson contributed an enhancement to mkisofs(8), the “-sort” option. In
the accompanying README.sort file he explains how directories and files can be ordered as desired
by assigning numerical weights to the directories and files by means of an external sort file. The
explanation in README.sort is enough to determine how to sort the files in the .iso file in whatever
order is desired.

Here's an example of sorting the files in numerical ascending order. Higher weights are output earlier
in the .iso file:

cat ../sort_asc.txt
./A 10000

./B/two 9000
./B/two/three 8000
./C/four 7000
./C/four/five 6000
./C/four/five/six 5000

./D/seven 4000
./E/eight 3000
./E/eight/nine 2000
#

Running the mkisofs(8) command with this ascending sort file:

mkisofs -sort ../sort_asc.txt -iso-level 3 -gui -v -R -1 -J -o test mkisofs.iso

Results in the output:

0001c0d0 50 54 4f 52 20 46 4f 52 20 43 4f 4e 54 41 43 54 |PTOR FOR CONTACT|
0001c0e0 20 49 4e 46 4f 52 44 41 54 49 4f 4e 2e 00 00 00 | INFORMATION....
0001c0f0 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 |....vuniiennionn.. |

*

0001c800 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 31 |1111111111111111|
*

000lcbe0 31 31 31 31 31 31 31 31 0a 00 00 00 00 00 00 0O [11111111........ |
0001cbf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....uniienninonn.. |

*

00014000 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 32 |2222222222222222|
*

0001d3e0 32 32 32 32 32 32 32 32 0a 00 00 00 00 00 00 00 [22222222........ |
0001d3f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....uniiennionn.. |

*

00014800 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 33 |3333333333333333|
*

0001dbe0 33 33 33 33 33 33 33 33 0Oa 00 00 00 00 00 00 00 [33333333........ |
0001dbf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |.....uniienninonnn.. |

*

0001e000 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 |4444444444444444|
*

0001e3e0 34 34 34 34 34 34 34 34 0a 00 00 00 00 00 00 00 |44444444........ |
0001e3f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....ouniiennonn.. |

*

0001e800 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 |5555555555555555]|
*

000lebe0 35 35 35 35 35 35 35 35 0a 00 00 00 00 00 00 00 |55555555........ |
0001ebf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...iiuniiunninonnn. |

*

0001£000 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 36 |6666666666666666 |
*

0001f3e0 36 36 36 36 36 36 36 36 0a 00 00 00 00 00 00 00 |66666666........ |
0001£3f0 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 |.....uniienninonn.. |

*

0001£800 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 37 |7777777777777777|
*

0001fbe0 37 37 37 37 37 37 37 37 0a 00 00 00 00 00 00 00 |77777777........ |
0001fbf0 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 |...eviunieenninennn. |

*

00020000 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 |8888888388888888|
*

000203e0 38 38 38 38 38 38 38 38 0a 00 00 00 00 00 00 OO |88888888........ |
000203f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |....vuniiunninonnn.. |

*

00020800 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 39 [9999999999999999 |
*

00020be0 39 39 39 39 39 39 39 39 O0a 00 00 00 00 00 00 00]99999999........ |
00020bf0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |...eviunieunninennn. |

*

00021000 23 21 2f 62 69 6e 2f 73 68 0a 73 65 74 20 24 78 |#!/bin/sh.set -x|

00021010 Oa Oa 6d 6b 69 73 6f 66 73 20 2d 73 6f 72 74 20 |..mkisofs -sort |
00021020 2e 2e 2f 73 6f 72 74 5f 61 73 63 2e 74 78 74 20 | ../sort_asc.txt |
00021030 2d 69 73 6f 2d 6c 65 76 65 6¢ 20 33 20 2d 67 75 |-iso-level 3 -gu|
00021040 69 20 2d 76 20 2d 52 20 2d 6¢ 20 2d 4a 20 2d 6f |i -v -R -1 -J -of
00021050 20 74 65 73 74 5f 64 6b 69 73 6f 66 73 2e 69 73 | test_mkisofs.is|

00021060 6f 20 2e 20 0a Oa 00 00 00 00 00 00 00 00 00 00 Joouiion... |
00021070 00 00 00 00 00 00 00 00O 00 00 00 00 00 00 00 00 |...vvueiienninonn..

*

0006c800

Clearly, the .iso is now sorted as desired. Note also that the script file, which showed up at the
beginning in the earlier output, is now at the end. It was not assigned a weight in the sort_asc.txt file,
and by default its weight is zero, less than all the other specified files. All files in a directory inherit the
weight of that directory and its parent(s). It is therefore possible to sort every single file on the .iso in
whatever order is required.

The answer then, for my semi-annual knife fight is to order the directories the way I *thought* I
already was. Here is the sort file for the next DVD:

./ELTORO 30000
./etc 20000
./C6.0 10000
./D4.6 5000
./dloader.rc 5000
./boot.cfg 4000
./N70.1 4000
./F11.0 3000

Final note - I've stopped cursing deities on other planets, put my knives and voodoo dolls away, and can
now answer James Pearson's rhetorical comment at the end of the README.sort file:

“l have no idea if this is really useful ...”
James Pearson 22-Nov-2001

Yes, James. Yes it really, really is. Thank you!

-jpb

	Specifying the Order of Files on a DVD – Without the Knife

