
Working with SEC- the Simple Event
Correlator, Part Two
Jim Brown
 jpb@jimby.name

Copyright © 2004 Jim Brown

July 24, 2004

SEC by Risto Vaarandi, is a powerful event correlation engine written entirely in Perl that is capable of
handling a wide variety of event correlation tasks.

Part One of this article introduced SEC and discussed the basics of setup and use. Part Two provides
more in-depth examples of SEC usage and includes a complete example of setting up a database
(MySQL) for use with SEC processing of logfiles on BSD systems.

Table of Contents
1 Introduction
2 Contexts Revisited
3 Miscellaneous SEC Topics
4 SEC Performance
5 Database Integration
6 Other Uses For SEC
7 Conclusion

1 Introduction
SEC is now (July, 2004) at version 2.2.5. Some of the examples in Part Two require features beyond
2.2. Check your version before attempting the examples below.

It's worth noting that event correlation is a complex subject. Events can be synchronous or
asynchronous in nature, and trying to develop a framework where they can be well understood
whenever they occur is difficult. SEC is quite capable of handling complexity assuming, of course, that
a suitable ruleset can be designed.

In Part Two, only the example files and output will be given for each example. The default execution
statement is:

$ perl sec.pl -conf=example.conf -input=- -debug=4

(no informative debug from SEC) unless otherwise noted.

mailto:jpb@jimby.name
http://www.perl.org/
http://www.estpak.ee/~risto/sec/

2 Contexts Revisited
Contexts, as explained in Part One, are logical instances of data that relate to events. They exist, or
they do not exist. In this section, we explore contexts in more depth.

2.1 Logical Operations With Contexts
The earlier examples used contexts as simple boolean flags. If a context existed, and a pattern was
matched, a rule was considered matched and any actions were triggered.

Contexts can be combined with the following perl logical operators- !, &&, || and parentheses.
Consider the following example:

Example C5.1.01.conf
Context logical operations
Create FOO_CONTEXT on pattern 'foo'
Create BAR_CONTEXT on pattern 'bar'
Create BAZ_CONTEXT on pattern 'baz'
On pattern 'checkme', write out message if all three exist.
#

type=Single
ptype=RegExp
pattern=foo
desc=$0
action=create FOO_CONTEXT; write - creating context FOO_CONTEXT;

type=Single
ptype=RegExp
pattern=bar
desc=$0
action=create BAR_CONTEXT; write - creating context BAR_CONTEXT;

type=Single
ptype=RegExp
pattern=baz
desc=$0
action=create BAZ_CONTEXT; write - creating context BAZ_CONTEXT;

type=Single
ptype=RegExp
pattern=checkme
context=FOO_CONTEXT && BAR_CONTEXT && BAZ_CONTEXT
desc=$0
action=write - FOO_CONTEXT && BAR_CONTEXT && BAZ_CONTEXT is TRUE

When run, the output looks like:

$ perl sec.pl -conf=C5.1.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C5.1.01.conf
foo
creating context FOO_CONTEXT
bar
creating context BAR_CONTEXT
baz
creating context BAZ_CONTEXT
checkme
FOO_CONTEXT && BAR_CONTEXT && BAZ_CONTEXT is TRUE
checkme
FOO_CONTEXT && BAR_CONTEXT && BAZ_CONTEXT is TRUE
^C

This example required all three contexts to exist to produce output on the ``checkme'' input. A different
logical condition on the ``checkme'' rule such as:

type=Single
ptype=RegExp
pattern=checkme
context=!FOO_CONTEXT && (BAR_CONTEXT || BAZ_CONTEXT)
desc=$0

action=write - !FOO_CONTEXT && (BAR_CONTEXT || BAZ_CONTEXT) is TRUE

is possible.

Output:

$ perl sec.pl -conf=C5.1.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C5.1.01.conf
bar
creating context BAR_CONTEXT
baz
creating context BAZ_CONTEXT
checkme
!FOO_CONTEXT && (BAR_CONTEXT || BAZ_CONTEXT) is TRUE
foo
creating context FOO_CONTEXT
checkme
checkme
^C

More complex logical expressions are possible. Use of parentheses to disambiguate logical conditions
is recommended. Note that the above examples contained contexts with infinite lifetimes. Complex
timing scenarios are possible, and often depend on asynchronous input from multiple sources.

2.2 Verifying Contexts and State Information
With the rapid rise in complexity using logical operators, there is a need to be able to verify the state of
all SEC variables, contexts and state information. The is where the ``USR1'' signal and the -dump
parameter come in.

Sending the SEC process the USR1 signal directs SEC to dump information about the current state of
its contexts, internal lists, rule usage statistics and other useful information. By default, SEC will dump
this internal information to /tmp/sec.dump. Use the -dump=filename parameter to change the
default setting.

To see how this works, re-run the above example and, after the first input (foo) send the perl process
running the SEC program the USR1 signal:

$ perl sec.pl -conf=C5.1.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C5.1.01.conf
foo
creating context FOO_CONTEXT

Then, from another window or terminal session, signal SEC with the USR1 signal. This example is
from a BSD based system:

$ ps -ax | grep sec
 379 p0 S+ 0:00.18 perl sec.pl -conf=C5.1.01.conf -input=- -debug=4
$ kill -USR1 379

Upon returning to the original window, notice that SEC has written a notification that signal USR1 was
received:

$ perl sec.pl -conf=C5.1.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C5.1.01.conf
foo
creating context FOO_CONTEXT
SIGUSR1 received: dumping data to /tmp/sec.dump

Examining /tmp/sec.dump we find:

$ cat /tmp/sec.dump
Date of dump: Fri Dec 5 16:18:57 2003
Program version: 2.1.11

Performance statistics:
==
Run time: 108 seconds
User time: 0.2109375 seconds
System time: 0.0546875 seconds
Child user time: 0 seconds
Child system time: 0 seconds
Processed input lines: 1

Rule usage statistics:
==

Statistics for the rules from C5.1.01.conf
--
Rule 1 at line 9 ($0) has matched 1 events
Rule 2 at line 15 ($0) has matched 0 events
Rule 3 at line 21 ($0) has matched 0 events
Rule 4 at line 27 ($0) has matched 0 events

Content of input buffer:
--

foo
--

Pending events that are generated by rules:
--
--

List of active event correlation operations:
==
Total: 0 elements

List of active contexts:
==
Context Name: FOO_CONTEXT
Creation Time: Fri Dec 5 16:17:12 2003
Lifetime: infinite
--
Total: 1 elements

Running children:
==
Total: 0 elements

Note the following:

General usage and performance statistics reveal various details of SEC operation.

This section shows how many times each rule has been matched. In this example, Rule 1 (starting
on line 9 of the configuration file) has been matched exactly once.

Contents of the input buffer, showing the last several lines. The size of the input buffer is
contolled by the -bufsize=n parameter. The default is 10 lines. (Note- this example was shortened
for readability.)

The list of active contexts are shown here. There is one entry for each context which lists all the
details about the context- lifetime, expiration actions, etc.

Any child processes started by SEC will be listed in this section. There are none in this example.

Using dumps to determine the exact state of SEC is quite useful in situations involving many complex,
interrelated events.

file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-DUMP01
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-DUMP02
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-DUMP03
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-DUMP04
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-DUMP05

2.3 More Mini-Program Examples
Part One of this article introduced SEC mini-programs- small perl programs that can function as a
logical context. This section presents two more examples of using perl mini-programs- one that
interrupts normal event processing, and one that utilizes external perl modules with SEC.

The first example creates a rule that interrupts normal event processing. When the keyword ``foo'' is
entered, the mini-program is entered and the user is prompted for a secret word:

Example C5.2.01.conf
First rule interrupts event processing until
secret word is entered.

type=Single
ptype=RegExp
pattern=foo
context= = \
({ my $inp; \
 my $t1; \
 while(1) \
 { \
 print "Enter secret keyword to continue:"; \
 $inp = <>; \
 chop $inp; \
 print "you said [$inp]\n"; \
 last if ($inp eq "ZuLu"); \
 } \
 1; \
};)
desc=$0
action=write - Continuing...

Echo input.
type=Single
ptype=RegExp
pattern=.*
desc=$0
action=write - Entry was [%s]

Note that in this example, when ``foo'' is entered and the while loop is entered, input taken from the
keyboard does not pass into SEC's input buffer and get evaluated against the ruleset. This is confirmed
by signaling SEC to dump its internals as discussed above. Output from this example is:

$ perl sec.pl -conf=C5.2.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C5.2.01.conf
ready
Entry was [ready]
set
Entry was [set]
foo
Enter secret keyword to continue:grok
you said [grok]
Enter secret keyword to continue:zonk
you said [zonk]
Enter secret keyword to continue:ZuLu
you said [ZuLu]
Continuing...
one
Entry was [one]
two
Entry was [two]
SIGUSR1 received: dumping data to /tmp/sec.dump
^C

Output from the dumpfile confirms that our incorrect gueses (and the correct guess as well) are not in
the input buffer:

...
Statistics for the rules from C5.2.01.conf
--
Rule 1 at line 3 ($0) has matched 1 events
Rule 2 at line 23 ($0) has matched 4 events

http://www.jimby.name/SEC-examples/article.html

Content of input buffer:
--

ready
set
foo
one
two
--
...

The second example shows a different use of mini-programs from the SEC mailing list archives.
William Gertz has demonstrated how it is possible to load a complete perl module at SEC startup
(combining mini-programs with the special SEC internal event SEC_STARTUP).

Extending SEC Rules With Perl Modules (William Gertz).

Suppose we need to check whether an IP address or network is within a CIDR block range. Creating a
regular expression covering a large group of addresses seems like carpentry with scalpel. Consider:

172.16.20.128/26

prefix notation for 172.16.20.128 - 172.16.20.191. A regular expression that will match this range is:

pattern = \s(172\.16\.20\.1(?:2[89])|(?:[3-8][0-9])|(?:9[01])),\s

Unfortunately, adding more ranges to check makes the pattern even more complex. We need something
more fitting like a band saw rather than a surgical instrument. Fortunately there is NetAddr::IP from
CPAN.

If NetAddr::IP was already loaded and a range set, we could do the match using a context Perl
miniprogram:

...
pattern=\s(\S+),\s
ptype=RegExp
context= =(NetAddr::IP->new('$1')->within($range))
...

If the module can be loaded, $range can be used within a SEC rule. But we don't want a rule that loads
the module for each line of input- we need a rule that only loads the module at startup. For that we'll set
up a rule that matches only the SEC_STARTUP event:

type=Single
desc=Module load and range setup
ptype=SubStr
pattern=SEC_STARTUP
context=[SEC_INTERNAL_EVENT]
action=assign %a 0; \
 eval %a (require NetAddr::IP; \
 $range = NetAddr::IP->new('172.16.20.128/26'); 1;); \
 eval %a (exit(1) unless %a);

Note the following:

The event SEC_STARTUP is inserted by SEC at startup when SEC is executed up with the -
intevents parameter.

SEC also generates a special context, SEC_INTERNAL_EVENT, just before an internal event (in
this case SEC_STARTUP) is processed. This contex is deleted immediated after the internal event
is processed. The square brackets tell SEC to test the context before evaluating the pattern. SEC
will work without them, but it runs faster if this check is made first.

http://lists.sourceforge.net/mailman/listinfo/simple-evcorr-users
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#WGERTZ01
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#WGERTZ02

The action loads the NetAddr::IP module but forces perl to exit if the load or $range setup fails.

Loads the module through the require function, and sets $range through the new method call. It
sets %a to 1 (the success indicator) only if the eval action runtime compile succeeds. If the eval
action fails, SEC doesn't change %a from the default failed indicator (0).

For this example, SEC version 2.2 or greater must be used. Here is the complete ruleset for this
example:

Example C5.2.02.conf
Rule 1 load NetAddr::IP on SEC startup.
Rule 2 uses the NetAddr->within() method
to check an incoming IP
Rule 3 matches any IP address input not found by Rule 2
type=Single
desc=Module load and range setup
ptype=SubStr
pattern=SEC_STARTUP
context=[SEC_INTERNAL_EVENT]
action=assign %a 0; \
 eval %a (require NetAddr::IP; \
 $range = NetAddr::IP->new('172.16.20.128/26'); 1;); \
 eval %a (exit(1) unless %a);

type=Single
desc=$0
ptype=RegExp
pattern=(\d+\.\d+\.\d+\.\d+)
context= =(NetAddr::IP->new('$1')->within($range))
action=write - Matched %s.

type=Single
desc=$0
ptype=RegExp
pattern=.*
action=write - %s was not matched.

Run this example with the following command (includes informative debug output):

$ perl sec.pl -conf=C5.2.02.conf -input=- -intevents

Example output:

$ perl sec.pl -conf=C5.2.02.conf -input=- -intevents
Simple Event Correlator version 2.2.beta2
Reading configuration from C5.2.02.conf
3 rules loaded from C5.2.02.conf
Creating SEC internal context 'SEC_INTERNAL_EVENT'
Creating SEC internal event 'SEC_STARTUP'
Assigning value '0' to variable '%a'
Evaluating code 'require NetAddr::IP; $range = NetAddr::IP-
>new('172.16.20.128/26'); 1;' and setting variable '%a'
Assigning value '1' to variable '%a'
Evaluating code 'exit(1) unless 1' and setting variable '%a'
Assigning value '1' to variable '%a'
Deleting SEC internal context 'SEC_INTERNAL_EVENT'
172.16.20.128
Writing event 'Matched 172.16.20.128.' to file -
Matched 172.16.20.128.
1.2.3.4
Writing event '1.2.3.4 was not matched.' to file -
1.2.3.4 was not matched.
172.16.20.191
Writing event 'Matched 172.16.20.191.' to file -
Matched 172.16.20.191.
172.16.20.192
Writing event '172.16.20.192 was not matched.' to file -
172.16.20.192 was not matched.
^C

file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#WGERTZ03
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#WGERTZ04

3 Miscellaneous SEC Topics

3.1 More Uses of SEC Variables
This section includes additional examples of variable use in conjunction with the SEC internal startup
event.

Consider the following rule set:

Example C6.1.01.conf
Setting variables through the environment.
#
type=Single
ptype=RegExp
pattern=(SEC_STARTUP|SEC_RESTART)
desc=$0
context=SEC_INTERNAL_EVENT
action=eval %P ($ENV {'SEC_MAINDIR'});\
 eval %S ($ENV {'SEC_SCRIPTSDIR'});\
 eval %F ($ENV {'SEC_FIFO'});\
 spawn /usr/bin/tail -f %P/SEC_input2

#
Test rule.
#
type=Single
ptype=RegExp
pattern=testme
desc=$0
action=write - %P ; \
 write - %S ; \
 write - %F

This example shows how variables can be set through environment variables for use in later rules.

To be useful, the environment variables SEC_MAINDIR, SEC_SCRIPTSDIR, and SEC_FIFO should be
set before running this example. In sh and derived shells, set these variables as follows:

$ SEC_MAINDIR=foo/main ; export SEC_MAINDIR
$ SEC_SCRIPTSDIR=foo/scripts ;export SEC_SCRIPTSDIR
$ SEC_FIFO=foo/fifo ; export SEC_FIFO

The spawn action in the above rule executes the tail program. This is used to enable SEC to gather
input from more than one input stream at a time. tail requires that the file exist, so:

$ mkdir -p $SEC_MAINDIR
$ touch $SEC_MAINDIR/SEC_input2

before using.

This example depends on using the -intevents parameter:

$ perl sec.pl -conf=C6.1.01.conf -input=- -intevents

Output with informative debug:

$ perl sec.pl -conf=C6.1.01.conf -input=- -intevents
Simple Event Correlator version 2.1.11
Reading configuration from C6.1.01.conf
2 rules loaded from C6.1.01.conf
Creating context 'SEC_INTERNAL_EVENT'
Creating SEC internal event 'SEC_STARTUP'
Evaluating code '$ENV {'SEC_MAINDIR'} ' and setting variable '%P'
Assigning value 'foo/main' to variable '%P'
Evaluating code '$ENV {'SEC_SCRIPTSDIR'} ' and setting variable '%S'
Assigning value 'foo/scripts' to variable '%S'
Evaluating code '$ENV {'SEC_FIFO'} ' and setting variable '%F'
Assigning value 'foo/fifo' to variable '%F'
Spawning shell command '/usr/bin/tail -f foo/main/SEC_input2'
Child 1445 created for command '/usr/bin/tail -f foo/main/SEC_input2'
Deleting context 'SEC_INTERNAL_EVENT'

testme
Writing event 'foo/main' to file -
foo/main
Writing event 'foo/scripts' to file -
foo/scripts
Writing event 'foo/fifo' to file -
foo/fifo

 (Received input from second input stream- see below.)

Creating event 'testme' (received from child 1445)
Writing event 'foo/main' to file -
foo/main
Writing event 'foo/scripts' to file -
foo/scripts
Writing event 'foo/fifo' to file -
foo/fifo
^C

The first instance of testme was entered at the keyboard. The second instance was entered from:

$ echo testme >> foo/main/SEC_input2

3.2 Notes on Logging Windows Systems
Microsoft Windows systems do not use syslog for event logging. Instead, Windows sends event
messages to an internal event logging system. These event logs can be viewed with the Event Viewer
application located in the Administrative Tools area. Three types of logs are available, Application,
System, and Security. In this section, we will discuss how to get Windows systems to log with syslog,
and how to read them with SEC.

A full treatment of Windows logging is beyond the scope of this article. (See the Microsoft Knowledge
Base article `` How To Enable and Apply Security Auditing in Windows 2000'' for a more extensive
treatment of event logs.) In order to convert Microsoft event logs to syslog messages, third-party
applications are ususally used. For this discussion, we will use the freely available Snare for Windows
product from Intersect Alliance available here. The general principles discussed here are applicable to
other products as well.

Install the Snare application on your Windows system. Once installed, the Snare application starts up
as a service. By default, it sends syslog messages to the local host (127.0.0.1). To configure Snare to
send logs to another host, click ``Setup'', then ``Audit Configuration''. Enter the local host name (your
Windows system name) and the IP or DNS address of the remote syslog server. You may also change
the ``Facility'' (default ``User'') and ``Level'' (default ``Notice''). Be sure your /etc/syslog.conf
configuration is configured to handle the Facility and User specified.

Once these initial configurations are accepted, Snare will begin sending log entries to the syslog host.
Ensure that the syslog host is configured to allow syslog entries from remote hosts, and restart syslogd
if necessary. By default, Snare has ``detailed'' logging turned on, and you should begin to see a fair
amount of logs arriving at the log server. The entries are tab delimited and look similar to the following
(folded for readability):

Jul 28 20:50:09 10.1.1.50 78LYH8R MSWinEventLog 0 Security 406 Wed
Jul 28 20:50:09 2004
 592 Security JBrown User Success Audit 78LYH8R Detailed Tracking
A new
 process has been created: New Process ID: 2004 Image File Name: \WINNT\
system32\notepad.exe
 Creator Process ID: 1416 User Name: JBrown Domain: 78LYH8R Logon ID:
(0x0,0x15923) 0

http://www.intersectalliance.com/projects/SnareWindows/
http://support.microsoft.com/default.aspx?scid=kb;EN-US;300549

Jul 28 20:51:31 10.1.1.50 78LYH8R MSWinEventLog 0 Security 413 Wed
Jul 28 20:51:25 2004
 593 Security JBrown User Success Audit 78LYH8R Detailed Tracking
A process
 has exited: Process ID: 888 User Name: JBrown Domain: 78LYH8R Logon
ID: (0x0,0x15923) 7

Jul 28 20:53:17 10.1.1.50 78LYH8R MSWinEventLog 0 Security 420 Wed
Jul 28 20:53:17 2004
 592 Security JBrown User Success Audit 78LYH8R Detailed Tracking
A new
 process has been created: New Process ID: 1660 Image File Name: \WINNT\
system32\CMD.EXE
 Creator Process ID: 1416 User Name: JBrown Domain: 78LYH8R Logon ID:
(0x0,0x15923) 14

Jul 28 20:51:36 10.1.1.50 78LYH8R MSWinEventLog 0 Security 415 Wed
Jul 28 20:51:36 2004
 593 Security JBrown User Success Audit 78LYH8R Detailed Tracking
A process
 has exited: Process ID: 2004 User Name: JBrown Domain: 78LYH8R Logon
ID: (0x0,0x15923) 9

(The fields and their meaning are described in the above Microsoft article.)

The first entry is a notification that the notepad application was started (process ID 2004). The second
entry indicates that process ID 888 exited, but there is no way to tell the name of the process that exited
without tracking all processes as they start up and recording the process name along with the process
ID. This is a very resource intensive operation when there are thousands of processes per minute in a
busy system. The third entry is the start of the Windows CMD.EXE the command line interface. The
last entry is the shutdown of the notepad application noted in the first entry.

Clearly, there is a lot of data being generated by the event subsystem in Windows. Careful tuning of the
Local Security Policy, as well as the Snare ``Audit Reporting Objectives'' can reduce the overall load.

If all you want to track with SEC is the ``Process Creation'' event type, the following rule should detect
these events. The long pattern line contains escaped newlines for readability.

#
Snare syslog Rule for Process Creation
#

type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+(\S+)\s+\
MSWinEventLog\t\d+\tSecurity\t\d+\t.*?\t(\d+)\t\
Security\t\S+\t\S+\tSuccess Audit\t(\S+)\t\
Detailed Tracking.*?Process ID: (\d+).*?Name:\s+(.*?)\
Creator Process ID: (\d+)\s+User Name: (\S+)\s+\
Domain: (\S+)\s+Logon ID: (\S+)\s+\d+.*
desc=$0
action=write - Found pattern [%s]

with pattern backreferences Host or IPaddr, System Name, Windows Event ID, Hostname, new process
ID, new process name, parent process ID, User Name, Windows domain, and Logon ID. If this is too
much, perhaps just the essential:

pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+(\S+)\s+.*?New Process ID: (\d+).*?Name:\s+
(.*?)Creator.*

will do with backreferences Host or IPaddr, System Name, new process ID, and new process name.

4 SEC Performance
An important question to ask before building a logging and monitoring system based on SEC is, "What
kind of load is SEC capable of handling?" This section investigates this question and provides some
tools for answering it in your local situation. It presents a framework of some test data and scripts to
test SEC.

4.1 SEC Performance Issues
Many factors influence the performance of a logging and monitoring system. A short list includes:

• Hardware platform

• Ruleset size

• Perl regular expression complexity

• SEC actions

• Velocity of data at SEC input

• syslogd (if used)

• Processor load

• Backend storage system (database or equivalent)

• Network congestion

Keep this list in mind during the discussion of the test framework below.

4.2 The SEC Performance Test Framework
This section presents a framework for testing SEC performance. It consists of:

• Test Data a collection of raw syslog messages captured during a typical project.

• SEC Rules to recognize messages in the test data. For this framework, complicated actions have
been removed.

• Test Scripts to start and stop the test, and capture performance metrics.

The Test Data is simply a collection of messages. This data can be any collection of text, including the
text of this article. However, the goal of this test is to measure SEC performance reading syslog
messages. If your test requirements are different, you can still use this framework. Simply adjust the
data files for size and prepare the end message as described below.

The tests in this section used three data files; a 1 MB message file, a 10MB message file, and a 100MB
message file. These files contain normal (and abnormal) syslog messages. The files are used in two
ways; (1) fed directly into SEC input, and (2) sent to syslogd from a special program, File2Syslog.pl.
More details on how this works are contained in the next section.

The files also contain a special end message: EOF. This text string identifies the end of the file and is
matched by a special rule:

#
SEC Performance Test Rule
Look for EOF at the end of the line, and send ourselves
a USR1 signal to dump statistics, and a TERM signal to
#end the program.
type=Single
ptype=RegExp
pattern=EOF\s*$
desc=$0
action=eval %k ($pid=$$$; kill (USR1, $pid); kill(TERM, $pid));

When the above rule is matched, the process id of the current program is read, and used to generate a
statistics dump, and then end the program. It's important to test for the string ``EOF'' at the end of the
input line to test the effort required to scan an entire line. Otherwise, the perl regular expression code
will not be as fully exercised.

Making small SEC rules files is easy. Coming up with large rule sets requires automation. Below is a
simple rule generating program that creates a set of rules to use with this test framework. The script
reads a dictionary and stores it in memory. It then outputs a configurable number of rules each
formatted like a sample syslog entry with the dictionary words placed in the text portion of the entry. A
large data set of rules can be generated for SEC performance testing using this script:

#!/usr/bin/perl
#
rulemaker.pl
#
#
Create SEC rules file from template using dictionary wordlist.
usage: perl rulemaker.pl NumberOfRules
#

sub usage() {
 print "\nusage: perl rulemaker.pl NumberOfRules\n\n";
 exit 1;
}

Get argument.
if($#ARGV == -1)
{
 &usage;
}
else
{
 $counter = $ARGV[0];
}

Change to common dictionary file.
$filename = "/usr/share/dict/web2";

Get words
open WORDLIST, $filename or die "Can't open wordlist [$filename]: $!";
@words = <WORDLIST>;
close WORDLIST;

#Solaris template
$template="\\S+\\s+\\d+\\s+\\S+\\s+(\\S+)\\s+(\\S+):\\s+\\[.*?\\]\\s+WORDS";

#Generate many rules
for ($i=1; $i<$counter ; $i++)
{

 $tmpl_words = "";

 # Pick up just two words.
 # This can also be made variable if desired.
 for($j=1; $j<=2; $j++)
 {
 #
 # No random seed here...
 #
 $randval = rand($#words);
 $randword = $words[$randval];

 chop $randword;
 $tmpl_words .= "$randword ";
 }

 chop $tmpl_words; #remove blank at end

 $t_template = $template;

 # Make substitution into template.
 $t_template =~ s/WORDS/$tmpl_words/;

 #print "[$t_template]\n";

 print << "END";
#Rule $i
type=Single
ptype=RegExp
pattern=$t_template
desc=\$0
action=none

END

}

#
Print the Last Rule
#

print << "LAST";
End of File Rule
type=Single
ptype=RegExp
pattern=EOF\\s*\$
desc=\$0
action=eval %k (\$foo=\$\$\$; kill (USR1, \$foo); kill(TERM, \$foo));
LAST

exit 0;

The Test Script performs a single test, starting SEC with one rules file and one data file. The script calls
File2Syslog.pl to push the data into syslogd. Once the last line of the data file is read, SEC performs the
action on the rule, sending both the dump signal, and the termination signal. By pairing different sizes
of rules files and data files, you can get a very good idea of how SEC performs with small and large
data sets and with small and large rules files. The results are shown in the next section.

#!/bin/sh
#
SEC Performance Test Driver Script
#
Clear out messages file (BSD)
cp /dev/null /var/log/messages
sleep 1

Start SEC with appropriate rules file
time perl sec.pl -conf=T01.conf -input=/var/log/messages &
#time perl sec.pl -conf=T50.conf -input=/var/log/messages &
#time perl sec.pl -conf=T100.conf -input=/var/log/messages &
#time perl sec.pl -conf=T500.conf -input=/var/log/messages &

Sleep to give SEC time to read large rule files.
sleep 4

perl File2Syslog.pl test.1MRealMsgs
#perl File2Syslog.pl test.10MRealMsgs
#perl File2Syslog.pl test.100MRealMsgs

You may find it necessary to restart syslog so as to allow writing to syslogd from a local process.
Under BSD, starting syslogd without any options meets this requirement. You may also find it
necessary to disable any syslog rotation facilities that are active during these tests. BSD systems
usually use newsyslog to rotate logs. This can be commented out under FreeBSD in the
/etc/newsyslog.conf file as follows:

...
/var/log/maillog 640 7 * @T00 Z

/var/log/sendmail.st 640 10 * 168 B
#/var/log/messages 644 5 100 * Z
/var/log/all.log 600 7 * @T00 Z
...

4.3 SEC Test Results
Using the scripts, and rules described in the last section, several tests were performed. The following
table lists results for data directly copied into the SEC input file (not through syslogd):

Table 1. SEC Performance With Data Copied Directly Into Input

No. Rules per
File

Input
Lines No. Bytes Run

Time
User
Time

Sys
Time

Msgs/
Second Notes

1 10436 1000004 1.47 0.36 0.05 7099.32 test.1MRealMsgs
1 104351 10000004 4.73 3.01 0.43 22061.52 test.10MRealMsgs

1 1043501 100000004 37.66 29.31 4.17 27708.47 test.100MRealMsg
s

The next table lists results for data sent via File2Syslog.pl to syslogd. SEC was configured to read the
syslog messages file:

Table 2. SEC Performance With Data Processed Through syslogd

No. Rules per
File

Input
Lines No. Bytes Run

Time
User
Time

Sys
Time

Msgs/
Second Notes

1 10436 1000004 3.37 0.36 0.04 3096.74 test.1MRealMsgs
1 104351 10000004 13.49 2.72 0.45 7735.43 test.10MRealMsgs

1 1043501 100000004 122.04 28.66 4.29 8550.48 test.100MRealMsg
s

50 10436 1000004 6.69 3.75 0.06 1559.94 test.1MRealMsgs
50 104351 10000004 50.00 38.57 0.43 2087.02 test.10MRealMsgs

50 1043501 100000004 524.14 426.74 4.42 1990.88 test.100MRealMsg
s

100 10436 1000004 10.41 7.42 0.05 1002.50 test.1MRealMsgs
100 104351 10000004 89.23 77.77 0.47 1169.46 test.10MRealMsgs

100 1043501 100000004 932.67 830.51 4.89 1118.83 test.100MRealMsg
s

500 10436 1000004 44.25 38.28 0.09 235.84 test.1MRealMsgs
500 104351 10000004 411.69 395.35 0.65 253.47 test.10MRealMsgs

500 1043501 100000004 9358.96 8931.46 12.86 111.50 test.100MRealMsg
s

The above tests were performed on an IBM T41, 1.Ghz, 512MB Ram, internal 60GB IDE disk, running
FreeBSD 4.10 with the KDE desktop. All syslog was local (not connected to a network). All tests were
performed five times and the results were averaged resulting in the values shown above.

5 Database Integration
There is considerable effort in getting SEC integrated with a database. The effort requires shifting
attention from SEC to the mechanics of getting a database installed and creating scripts to write to and
read from the database. This section outlines the following general steps:

• Install database software and perl DBI and DBD modules

• Create database schema

• Create database insert code

• Connect SEC and database insert code with IPC

To fully combine SEC with a database, you should have a working knowledge of SEC, and the perl
DBI and DBD::MySQL modules.

Inter-process communication (IPC) using named pipes (FIFOs) was discussed in Part One, Section 3.4.
where programs for reading and writing to named pipes were demonstrated. This section expands on
that background, building a data base to capture and manage syslog entries.

Because a lot of these steps are system specific only a high level discussion of how these steps are
performed are included. Read the database documentation on installation and configuration for your
system before proceeding.

5.1 Installing MySQL and required Perl Modules
The MySQL database will be used for this section. Follow the download and installation procedures
for MySQL for your system. Start up the data base engine and create a new data base for use called
sedb, (for ``Simple Event Data Base'') as follows:

$ mysql.sh start
$ mysqladmin -u root -p create sedb
Enter password: dummy
$

Next, follow the instructions on CPAN for installing the Perl DBI:: and DBD::mysql driver modules.

To verify that your installation is complete, you should now be able to run the following program
without error:

#!/usr/bin/perl
MySQL installation verification.
Open database 'sedb', then just exit.
No errors should occur.

use strict;
use Socket;
use DBI();

Connect to the database.
my $dbh = DBI->connect("DBI:mysql:database=sedb;host=localhost",
 "root", "dummy",
 {'RaiseError' => 1});
exit;

This ensures that you have a database correctly installed, and that connectivity to the database with the
DBI and DBD::mysql perl modules works correctly. If errors occur in running the above program, fix
any problems in your installation before proceeding.

It is also an excellent idea to read the Perl DBI:: documentation thoroughly. There are many pieces to
this module and it will pay off in the long run to have a ``more than passing acquaintance '' with it.

5.2 Connecting SEC to MySQL
Before going further, it is best to test exactly how SEC and MySQL will function together. The
communication between the two programs will be via FIFOs (named pipes). Part One already showed
how SEC can write to a FIFO. It also demonstrated a small program to read from a FIFO. All that is
left to do, is to enable the reading program to insert records into the database.

The script below (adapted from the Perl::DBI bundle) has been modified to read from a FIFO and
enter textlines into the database.

#!/usr/bin/perl
#
Example S8.2.01.pl - Script to read data out of a named pipe
and write to MySQL database.
#
#
$| = 1;

use strict;
use DBI();

my $filename;
my $inputline;
my $linenumber;

Open FIFO first. FIFO must already exist.
$filename = "./SEC_fifo";
open(FIFO, "+< $filename") or die "FIFO error on $filename $!";

Connect to MySQL. Database 'sedb' must already exist.

my $dbh = DBI->connect("DBI:mysql:database=sedb;host=localhost",
 "root", "dummy",
 {'RaiseError' => 1});

Drop table 'foo'. This may fail, if 'foo' doesn't exist.
Thus we put an eval around it.
eval { $dbh->do("DROP TABLE foo") };
print "Dropping table foo failed: $@\n" if $@;

Create a new table 'foo'. This must not fail, thus we don't
use eval.
$dbh->do("CREATE TABLE foo (id INTEGER, textline VARCHAR(80))");

print "Reading from FIFO...\n";

while (<FIFO>)
{
 $inputline = $_;
 # Quit read loop when requested.
 last if($inputline =~ /quit/i);

 chop $inputline;
 $linenumber++;
 print "Got: [$inputline], ";

 # Insert data into table 'foo', using placeholders
 $dbh->do("INSERT INTO foo VALUES (?, ?)",
 undef,
 $linenumber,
 $inputline);

 print "inserted it.\n";

}

Now retrieve data from the table.
my $sth = $dbh->prepare("SELECT * FROM foo");

$sth->execute();
while (my $ref = $sth->fetchrow_hashref()) {
 print "Found a row: id = $ref->{'id'}, line = $ref->{'textline'}\n";
}
Drop table 'foo'. At this point, table 'foo' exists, so
we won't use an eval.
$dbh->do("DROP TABLE foo");

$sth->finish();

Disconnect from the database.
$dbh->disconnect();

exit;

Before running this example, ensure that you have a FIFO named SEC_fifo in the directory where
the above script is run. Also, it may be helpful to have at least three terminal sessions opened for this
example.

To begin, make sure that MySQL is running on your system:

$ ps -ax | grep mysql
 1116 p2 I+ 0:00.01 mysql -u root -p sedb
 1045 p5 I 0:00.01 /bin/sh /usr/local/bin/mysqld_safe --user=mysql --
datadir=/var/db/mysql --pid-file=/var/
 1063 p5 S 0:01.97 /usr/local/libexec/mysqld --basedir=/usr/local --
datadir=/var/db/mysql --user=mysql --pi

Next, start up the reading script:

$ perl S8.2.01.pl
DBD::mysql::db do failed: Unknown table 'foo' at S8.2.01.pl line 30.
Dropping table foo failed: DBD::mysql::db do failed: Unknown table 'foo' at
S8.2.01.pl line 30.

Reading from FIFO...

The error output is OK in this case because the table does not exist in the newly created database. The
script actually creates the table it is about to use. The reading script is now reading from the FIFO,
waiting for input.

The first input test is simple. In another window, enter the following:

$ echo blah blah blah >> SEC_fifo

$ echo blah blah blah2 >> SEC_fifo
$ echo quit >> SEC_fifo

which causes the script to read and process the input:

Reading from FIFO...
Got: [blah blah blah], inserted it.
Got: [blah blah blah2], inserted it.
Found a row: id = 1, line = blah blah blah
Found a row: id = 2, line = blah blah blah2
$

The script read from the FIFO and inserted the text into the database table. When quit was entered, the
main input terminated, and the script printed out all the rows in the database table. This test exercises
the FIFO read and database insert and retrieval code.

Next, restart the script and, in another session, start up SEC with the same configuration file used in the
FIFO example in Part One and enter some test data:

Example C3.4.01.conf
Recognize any pattern and write to a FIFO.
#
type=Single

ptype=RegExp
pattern=(.*)
desc=$0
action=write SEC_fifo %s

$ perl sec.pl -conf=C3.4.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.4.01.conf
1 rules loaded from C3.4.01.conf
Database insert test line A.
Writing event 'Database insert test line A.' to file SEC_fifo
Database insert test line B.
Writing event 'Database insert test line B.' to file SEC_fifo
Here is line C.
Writing event 'Here is line C.' to file SEC_fifo
Line D is the last line...
Writing event 'Line D is the last line...' to file SEC_fifo
quit
Writing event 'quit' to file SEC_fifo

As each line is processed by SEC, it is written to ./SEC_fifo, and received by the reader script. The
reader script inserts the whole line into the database, along with a line id number:

Got: [Database insert test line A.], inserted it.
Got: [Database insert test line B.], inserted it.
Got: [Here is line C.], inserted it.
Got: [Line D is the last line...], inserted it.

When ``quit'' is received, the reader script quits the read loop, and falls through to the second part of the
script where it reads out all records in table 'foo', drops the table, disconnects from the sedb database
and exits:

Found a row: id = 1, line = Database insert test line A.
Found a row: id = 2, line = Database insert test line B.
Found a row: id = 3, line = Here is line C.
Found a row: id = 4, line = Line D is the last line...
$

Note that SEC is still running however, and any further attempts to process input and write to the now-
closed FIFO will fail:

Line E is entered after reader script closed.
Writing event 'Line E is entered after reader script closed.' to file SEC_fifo
Can't open pipe SEC_fifo for writing event 'Line E is entered after reader script
closed.'!

This illustrates one of the key problems with this type of interprocess communication- both sides must
always be up and ready to receive input. A production quality system would normally use some sort of
process control monitor for each of these processes, restarting them if they fail.

It may also be necessary to tune the operating system to account for bursty data which might overflow
a FIFO. Procedures for this are operating system dependant. Check the documentation for your system.

5.3 The Simple Event Data Base
Using a database to collect, manage, and report log entries is not new. Many commercial products and
some Open Source products now utilize a database backend. But, with all the flexibility a database
provides, it also introduces complexity in installation, operation and on-going maintenance.

For our purposes, we will keep the design goals of sedb deliberately simple. We want to keep raw text,
and we also want to aggregate information on different types and levels of logged events. So:

• sedb should capture raw log text and apply an MD5 checksum to each record as it is stored.

• sedb should store event correlation information from SEC, regarding the threat type and the
threat level.

Threats can be categorized in two ways- a threat type is a category that determines how to group
similar events. Section 5.2 in Part One introduced several threat types that will be used in this section.
These are primarily security oriented types, but adding new types is straightforward- simply create a
new, unique category and create rules to match.

The following table contains the threat types used for sedb:

Type Description
------- ---
MONITOR - Messages that concern syslogd itself, or messages that
 infer that the logging system itself has been
 enabled/disabled
PHYSMOD - Messages that concern physical modification to the
 system such as PCMCIA card, cable or storage
 device insertion/removal
USERACT - Messages that concern unusual user activities such as
 privilege escalation, account modifications, or other
 unusual activities
NETWACT - Messages that concern network related activities such
 as connection attempts, IDS events, DoS events, known
 network attacks
COMPROM - Messages inferring a compromise may have occurred such
 as suspicious core dumps, and integrity check failures
PROCESS - Messages inferring that unexpected processes are running
 such as a known trojan, P2P binaries, etc.
SHUTRST - Messages that infer the system has been restarted

These types will be passed from SEC to the sedb database as described later in this section.

A threat level is an indication of the severity of the threat. This example will use the conventional RED,
ORANGE, YELLOW, and GREEN color scheme to indicate decreasing levels of severity.

The overall system then-

1. Receives raw log entries from syslog

2. Analyzes raw log entries and generates an ``analyzed'' entry

3. Stores both raw and analyzed entries in sedb

Collection is only one half of a real working system. Reporting is also important. We will provide some
SQL queries that report on the level and severity of the data. Fancy reporting (including graphs, charts,
etc.) is left as an exercise for the reader. Tobi Oetikers RRD Tool can be quite helpful in developing
fancy charts and graphs.

5.3.1 The Correlation Map and Strategy

What exactly, do we want SEC to correlate, and how do we do that? This section provides one solution
to these questions.

The following is a map of several items we want SEC to correlate. Two different threat types across the
top are joined by a horizontal bar with a directional symbol indicating the direction of correlation. For
example, if a USERACT event is followed by a MONITOR event, we will consider the events
correlated. The direction of the arrow indicates time.

MONITOR PHYSMOD USERACT NETWACT COMPROM PROCESS SHUTRST

http://people.ee.ethz.ch/~oetiker/webtools/rrdtool/

--
 o-------<-------o
 o---<---o
 o--->---o

The defined correlation combinations are:

USERACT->MONITOR

NETWACT->USERACT

NETWACT->COMPROM

Deriving these combinations is performed by asking how different combinations of events might be
related. For instance the first example, USERACT->MONITOR, would indicate that a possible cause of
syslogd being shutdown, or a network card being put into promiscuous mode, would be user activity
(USERACT). Of course, there are other possible causes. Certain user activity, such as a failed login,
may nave nothing to do with whether syslog was shutdown or a network card was put in to
promiscuous mode. These examples show how valid combinations may be detected, but does not
account for coincidences.

Just how SEC is to correlate events is a two-step process. With the First Level configuration file, we
process raw syslog messages and assign them a type and level. We then have SEC use the event action
to feedback the input into SEC to be read by the Second Level configuration file. It is the Second Level
configuration that uses the PairWithWindow rule to pair up possible correlations.

(Note: This is not the only way to find correlations in the input. Another way this could be done is to
create a context for each threat type and create rules that look for combinations of contexts as shown
above in Section 2.1.)

In the configuration files shown below %F is a SEC variable that is set to the name of the output FIFO.
The variable is set in the System configuration file shown in a later section.

5.3.2 The sedb First Level Configuration File

The rules immediately below are part of the First Level configuration file. The Second Level Rules
configuration file is shown in the next section.

#
First Level Configuration File - First.conf
#
Log Text Pass Thru Rule. This rule sends the text
to the database backend for storage in the logtext table.
--
#
THIS RULE MUST BE THE FIRST RULE. IT MUST HAVE A 'continue=TakeNext'
STATEMENT.
#
#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+(.*)
continue=TakeNext
desc=$0
action=write %F LOG|$1|$2

#
The rules below assign a type and level to each log entry.

file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-CORMAP01
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-CORMAP02
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article-part2.html#CO-CORMAP03

#

MONITOR - SEC rules to pick up disruptive monitoring events.
#
#Sample BSD logs involving syslogd disabled or unusual promiscuous mode.
#---
#Nov 15 20:02:48 foohost syslogd: exiting on signal 15
#Nov 22 02:00:02 foohost syslogd: restart
#Nov 11 15:58:55 foohost /kernel: de0: promiscuous mode enabled
#Nov 11 15:58:57 foohost /kernel: de0: promiscuous mode disabled
#

#
Syslog Exit

RED event. No context needed.
#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+syslogd: exiting on signal (\d+)
desc=$0
action=event 0 $1 MONITOR:RED syslog exit on signal $2 at %t

#
Syslog Restart

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+syslogd: restart
desc=$0
action=event 0 $1 MONITOR:YELLOW syslog restart at %t

#
Syslog Exit

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: (\S+) promiscuous mode (\S+)
desc=$0
action=event 0 $1 MONITOR:RED $2 promiscuous mode $3 at %t

PHYSMOD - Events concerning physical modifications.
#
Sample BSD logs involving physical modifications.
#--
#Nov 14 21:11:19 foohost /kernel: pccard: card inserted, slot 0
#Nov 14 22:28:09 foohost /kernel: pccard: card removed, slot 0
#Nov 12 19:46:31 foohost /kernel: de0: link down: cable problem?
#Nov 12 19:46:42 foohost /kernel: de0: autosense failed: cable problem?
#Oct 18 06:26:37 foohost pccardd[49]: ep0: 3Com Corporation (/3C589/) inserted.
#Oct 18 06:26:42 foohost pccardd[49]: pccardd started
#

#
PCMCIA Card Insertion, Removal

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: pccard: card (\S+), slot (\d+)
desc=$0
action=event 0 $1 PHYSMOD:ORANGE pccard: card $2 in slot $3 at %t

#
PCMCIA Card Daemon

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+pccardd\[\d+\]: (.*)
desc=$0
action=event 0 $1 PHYSMOD:YELLOW pccardd: $2 at %t

#
Cabling Problem

#
type=Single
ptype=RegExp

pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: (\S+)\s+(.*?:) cable problem
desc=$0
action=event 0 $1 PHYSMOD:ORANGE cable problem on $2, text: $3 at %t

USERACT - Events concerning user activities.
#
Sample BSD logs involving logins, change of UID and privilege escalations.
#---
#Nov 14 12:14:58 foohost sshd[3388]: fatal: Timeout before authentication for
192.168.1.1
#Nov 14 19:58:34 foohost sshd[6597]: Bad protocol version identification
'^B^S^D^Q^L' from 192.168.1.100
#Oct 18 06:16:53 foohost sshd[131]: Accepted keyboard-interactive/pam for foouser
from 192.168.1.1 port 1077 ssh2
#Nov 15 04:02:24 foohost login: 1 LOGIN FAILURE ON ttyp2
#Nov 15 04:02:24 foohost login: 1 LOGIN FAILURE ON ttyp2, mysql
#Oct 18 03:20:46 foohost login: 2 LOGIN FAILURES ON ttyv0
#Oct 18 02:52:04 foohost login: ROOT LOGIN (root) ON ttyv1
#Oct 18 06:11:11 foohost login: login on ttyv0 as root
#Nov 10 19:40:03 foohost su: foouser to root on /dev/ttyp0
#Nov 18 09:37:38 foohost su: BAD SU foouser to root on /dev/ttyp3
#Nov 22 12:26:44 foohost su: BAD SU goodboy to root on /dev/ttyp0
#

#
sshd Problems

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+sshd\[\d+\]: (fatal|Bad)(.*)
desc=$0
action=event 0 $1 USERACT:YELLOW sshd $2 problem, text: $3 at %t

#
sshd Accepted

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+sshd\[\d+\]: Accepted (.*)
desc=$0
action=event 0 $1 USERACT:GREEN sshd accepted login, text: $2 at %t

#
login FAILURES

ORANGE
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+login: (.*?FAILURE.)(.*?ON) (.*)
desc=$0
action=event 0 $1 USERACT:YELLOW login $2 on $4 at %t

#
su bad

ORANGE
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+su: (BAD SU) (\S+) to (\S+) on (\S+)
desc=$0
action=event 0 $1 USERACT:YELLOW su: $2 $3 to $4 on $5 at %t

#Nov 10 19:40:03 foohost su: foouser to root on /dev/ttyp0
#Nov 18 09:37:38 foohost su: BAD SU foouser to root on /dev/ttyp3
#Nov 22 12:26:44 foohost su: BAD SU badboy to root on /dev/ttyp0
#
#
su good to root

ORANGE
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+su: (\S+) to root on (\S+)
desc=$0
action=event 0 $1 USERACT:YELLOW su: $2 to ROOT on $4 at %t

NETWACT - SEC rules to pick up suspicious network events.

#
Sample BSD logs involving odd or suspicious network activity.
#--
#Jun 3 17:46:24 foohost named[38298]: client 10.12.127.176#3714: request has
invalid signature: tsig verify failure
#Apr 14 16:23:08 foohost /kernel: arp: 10.10.152.12 moved from 00:90:27:37:35:cf to
00:d0:59:aa:61:11 on de0
#Apr 1 11:23:39 jimby /kernel: Limiting closed port RST response from 368 to 200
packets per second

#
named Dynamic DNS Update rejection

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+named\[\d+\]: client (\S+): request has invalid
signature:(.*)
desc=$0
action=event 0 $1 NETWACT:YELLOW dyndns attempt from $2, text: $3 at %t

#
MAC address moved

ORANGE
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: arp: (\S+) moved from (\S+) to (\S+) on
(\S+)
desc=$0
action=event 0 $1 NETWACT:YELLOW arp moved on $2, from: $3 to $4 on $5 at %t

#
DoS RST rate limit

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: Limiting closed port RST response from
(\d+) to (\d+)
desc=$0
action=event 0 $1 NETWACT:YELLOW RST limit enforced: $2 to $3 at %t

COMPROM - SEC rules to pick up potential system compromise events.
#
Sample BSD logs involving potential system compromise.
#---
#May 25 18:09:55 foohost ntpd[1325]: ntpd exiting on signal 11
#Jul 21 18:33:16 foohost /kernel: pid 55454 (ftpd), uid 1001: exited on signal 8
#Apr 9 12:57:06 foohost /kernel: pid 28039 (telnet), uid 0: exited on signal 3
(core dumped)

#
ntpd crash

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+ntpd\[\d+\]: ntpd exiting on signal (\d+)
desc=$0
action=event 0 $1 COMPROM:RED ntpd crashed on signal $2 at %t

#
Process crash

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: pid \d+ \(\S+\), uid (\d+): exited on
signal (\d+)
desc=$0
action=event 0 $1 COMPROM:RED $2 crashed on signal $4, uid $3 at %t

PROCESS - SEC rules to pick up suspicious process events.
#
Sample BSD logs involving unusual processes.
#---
#Mar 23 08:05:52 foohost thttpd[126]: thttpd/2.25b 29dec2003 starting on port 8090

#
Suspicious processes

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+(thttpd)\[(\d+)\]:(.*)
desc=$0
action=event 0 $1 PROCESS:ORANGE suspicious process $2 pid $3, text: $4 at %t

SHUTRST - SEC rules to pick up system shutdown, restart events.
#
Sample BSD logs involving system shutdown and reset.
#---
#Mar 6 16:28:13 foohost reboot: rebooted by foouser
#Jul 15 17:35:49 foohost halt: halted by root
#Mar 6 16:29:17 foohost /kernel: Copyright (c) 1992-2003 The FreeBSD Project.

#
Reboot message

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+reboot: rebooted by (\S+)
desc=$0
action=event 0 $1 SHUTRST:RED rebooted by $2

#
Halt message

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+halt: halted by (\S+)
desc=$0
action=event 0 $1 SHUTRST:RED halted by $2

#
Restart message

#
type=Single
ptype=RegExp
pattern=^\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: Copyright \(c\) (\S+) The FreeBSD
Project
desc=$0
action=event 0 $1 SHUTRST:RED restart message at %t

Note how the event action contains the threat type and severity keywords encoded in the first token
('PHYSMOD:YELLOW', 'COMPROM:RED', etc). These tokens are decoded by the Second Level
Configuration file, where the analysis takes place.

5.3.3 The sedb Second Level configuration File

In the Second Level configuration file, the objective is to decode the incoming events from the First
Level configuration file and use the ``PairWithWindow'' rule type to match up events. Note the use of ``
%number'' variables in the ``action2'' rule entry. These refer to the matched backreferences of ``pattern''
in the earlier match. In this case, the syslog text of both entries in being stored with a ``CORR:'' tag for
easy retrieval.

#
Second Level Configuration File - Second.conf
#
#
Decode threat events coming in.
Note continue=TakeNext where it applies.
#

Anytime RED is passed it's an immediate keeper.
type=Single

ptype=RegExp
continue=TakeNext
pattern=^(\S+)\s+(\S+):RED\s+(.*)
desc=$0
action=write %F ANL|$1|$2|RED|$3

OFF_HOURS ORANGE is promoted to a RED.
type=Single
ptype=RegExp
continue=TakeNext
pattern=^(\S+)\s+(\S+):ORANGE\s+(.*)
context=OFF_HOURS
desc=$0
action=write %F ANL|$1|$2|RED|PROM:$3

Any other time ORANGE is passed
type=Single
ptype=RegExp
pattern=^(\S+)\s+(\S+):ORANGE\s+(.*)
desc=$0
action=write %F ANL|$1|$2|ORANGE|$3

#
Decode threat events coming in from First Level Configuration.
See note for each type. Note continue=TakeNext where it applies.
#

#Correlation Map entries. Use PairWithWindow

USERACT AND MONITOR
type=PairWithWindow
ptype=RegExp
pattern=^(\S+)\s+(USERACT):(\S+)\s+(.*)
desc=$0
continue=TakeNext
action=write - MONITOR event didn't follow USERACT within window
ptype2=RegExp
pattern2=^(\S+)\s+(MONITOR):(\S+)\s+(.*)
desc2=$0
action2=write %F ANL|$1|$2|$3|CORR:USERACT+MONITOR:(%4)+($4)
window=300

NETWACT AND USERACT
type=PairWithWindow
ptype=RegExp
pattern=^(\S+)\s+(NETWACT):(\S+)\s+(.*)
desc=$0
continue=TakeNext
action=write - USERACT event didn't follow NETWACT within window
ptype2=RegExp
pattern2=^(\S+)\s+(USERACT):(\S+)\s+(.*)
desc2=$0
action2=write %F ANL|$1|$2|$3|CORR:NETWACT+USERACT:(%4)+($4) ; reset -1
window=300

NETWACT AND COMPROM (NETWACT first)
type=PairWithWindow
ptype=RegExp
pattern=^(\S+)\s+(NETWACT):(\S+)\s+(.*)
desc=$0
continue=TakeNext
action=write - COMPROM event didn't follow NETWACT within window
ptype2=RegExp
pattern2=^(\S+)\s+(COMPROM):(\S+)\s+(.*)
desc2=$0
action2=write %F ANL|$1|$2|$3|CORR:NETWACT+COMPROM:(%4)+($4) ; reset -1
window=300

5.3.4 The sedb System Configuration File

The System Configuration file contains set of calendar rules that provides a context for
``BUSINESS_HOURS'' and ``OFF_HOURS''. In the case of an ORANGE level event occuring during
OFF_HOURS, that event is promoted to a RED event. By using contexts and pairings together it is
possible to create complicated correlations beyond the examples in this chapter.

The System Configuration file also contains a start-up rule. This rule sets various variables (such as ``
%F'' that will be used later. To enable these variables, SEC must be started with the -intevents,
parameter. See the SEC man page for more information.

#
System Configuration File - System.conf
Configuration file for SEC internal events.
#
#
This file contains a rule defining the SEC internal events processed
by SEC on startup and signals. It also contains the calendar
rules used by the system.
#
This file uses the internal events SEC_STARTUP and SEC_RESTART
#
#
%s Event description string (reserved by SEC)
%t Textual timestamp (reserved by SEC)
%d Numeric timestamp (reserved by SEC)
#
Additional variables used by the system.
--
%S Scripts directory $ENV{'SECSCRIPTSDIR'}
%T Temporary directory $ENV{'SECTMPDIR'}
%F fifo for output $ENV{'SECFIFO'}
#
NOTE: To enable these variables, SEC must be started
with the -intevents parameter.
See the SEC man page for more information.
#

#
Startup rule.
#
type=Single
ptype=RegExp
pattern=(SEC_STARTUP|SEC_RESTART)
desc=$0
context=SEC_INTERNAL_EVENT
action=eval %S ($ENV {'SECSCRIPTSDIR'});\
 eval %T ($ENV {'SECTMPDIR'});\
 eval %F ($ENV {'SECFIFO'});

Contexts set by calendar rules.
#
BUSINESS_HOURS - a context for business hours (6:00am to 7:59pm, M-F)
OFF_HOURS - a context for all other hours.
#
Business Hours- applies to all hosts. 6:00am - 7:59pm, M-F
Off hours - 8:00pm - 5:59am M-F and all day Sat and Sun . Set by Calendar Rules.
#
Three calendars are needed since calendar is run every minute
and we don't actually know when SEC will be started (or restarted)
#
#
type=Calendar
time=* 6-20 * * 1,2,3,4,5
desc=BUSINESS_HOURS
context=!BUSINESS_HOURS
action=create %s;\
 write - Switched to Business Hours;\
 delete OFF_HOURS;

type=Calendar
time=* 0-5,21-23 * * *
context=!OFF_HOURS
desc=OFF_HOURS
action=create %s;\

 write - Switched to Off Hours;\
 delete BUSINESS_HOURS;

type=Calendar
time=* * * * 6,7
context=!OFF_HOURS
desc=OFF_HOURS
action=create %s;\
 write - Switched to Off Hours;\
 delete BUSINESS_HOURS;

#
This calendar rule is a health check. Writes to stdout every
five minutes. This could be used for visual confirmation
that SEC is still running.
#
type=Calendar
time=0,5,10,15,20,25,30,35,40,45,50,55 * * * *
desc=SEC check
action=write - %s at %t

5.3.5 The sedb Schema

The schema for sedb is quite simple- just two tables. The logtext table keeps the raw log text, along
with an MD5 checksum of the entry. The loganalysis table keeps track of threat types
(COMPROM,PHYSMOD, MONITOR, etc.) and threat levels (RED, ORANGE, etc.).

#
#
Simple Event Data Base (sedb) schema.
#
sedb contains two tables:
#
logtext - used to store raw log text
loganalysis - used to store analysis of log text
#

DROP TABLE logtext;

CREATE TABLE logtext (lt_record_id BIGINT NOT NULL AUTO_INCREMENT UNIQUE,
 lt_dev_fqdn VARCHAR(128), # join with
la_dev_fqdn
 lt_date_inserted TIMESTAMP,
 lt_log_text TEXT,
 lt_text_md5hash VARCHAR(32),
 FULLTEXT (lt_log_text),
);
#
#--

DROP TABLE loganalysis;

CREATE TABLE loganalysis (la_record_id BIGINT NOT NULL AUTO_INCREMENT
UNIQUE,
 la_dev_fqdn VARCHAR(128), # Device FQDN
 la_date_inserted TIMESTAMP,
 la_threat_type VARCHAR(20), # PHYSMOD, MONITOR,
etc.
 la_threat_text TEXT, # The analysis message
 la_threat_level VARCHAR(8), # RED, ORANGE, YELLOW,
etc.
 la_md5_hash VARCHAR(32),
 FULLTEXT (la_threat_text)
);
#
Index for threat type.
#
ALTER TABLE loganalysis ADD INDEX la_threat_type_idx (la_threat_type);

#
Index for threat level.
#
ALTER TABLE loganalysis ADD INDEX la_threat_level_idx (la_threat_level);

Once the MySQL software is started up, log into the MySQL monitor program mysql and load the
following data base schema:

$mysql -u root -p sedb
Enter password:
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 3 to server version: 4.0.18

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show tables;
Empty set (0.00 sec)

mysql>
mysql>
mysql> \. sedb.sql
ERROR 1051: Unknown table 'logtext' (Note: this error is OK. Dropped table
does not exist.)
Query OK, 0 rows affected (0.00 sec)

ERROR 1051: Unknown table 'loganalysis' (Note: this error is OK. Dropped table
does not exist.)
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql> show tables;
+----------------+
| Tables_in_sedb |
+----------------+
| loganalysis |
| logtext |
+----------------+
2 rows in set (0.00 sec)

mysql> describe loganalysis;
+------------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+---------------+------+-----+---------+----------------+
la_record_id	bigint(20)		PRI	NULL	auto_increment
la_dev_fqdn	varchar(128)	YES		NULL	
la_date_inserted	timestamp(14)	YES		NULL	
la_threat_type	varchar(20)	YES	MUL	NULL	
la_threat_text	text	YES	MUL	NULL	
la_threat_level	varchar(8)	YES	MUL	NULL	
la_md5_hash	varchar(32)	YES		NULL	
+------------------+---------------+------+-----+---------+----------------+
7 rows in set (0.38 sec)

mysql> describe logtext;
+------------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+---------------+------+-----+---------+----------------+
lt_record_id	bigint(20)		PRI	NULL	auto_increment
lt_dev_fqdn	varchar(128)	YES		NULL	
lt_date_inserted	timestamp(14)	YES		NULL	
lt_log_text	text	YES	MUL	NULL	
lt_text_md5hash	varchar(32)	YES		NULL	
+------------------+---------------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

mysql> exit
Bye

5.3.6 IPC Data Format

We will use the same techniques discussed above for passing data from SEC to the data base insert
script.

Along with the use of a FIFO there must be an agreed data format for communication. To keep things
as simple as possible, we will use a pipe delimited format as follows:

Log Text Entry : LOG|<hostname>|<log_text_entry_from_syslog>
Log Analysis Entry: ANL|<hostname>|<type>|<level>|<analyzed_entry_from_SEC>

This format is already shown in the Second Level Configuration file. The format is simple to create,
and simple to parse. The only drawback, is that there is an interdependency on the format for both SEC,
which creates the format, and the database insert script which reads and acts on the format. Any
modifications to either side must consider the effect on the other side. There are, of course, other ways
to do this, but this is a simple, easy to implement method.

The database insert code in the next section is similar to the pipe output example given above.

5.3.7 The dbinsert.pl Script

Create a directory for all the scripts needed for interacting with sedb. The following perl module,
dbinsert.pl will be used to load data into the datbase:

#!/usr/bin/perl
###
#
NAME:
dbinsert.pl - Enter log records in database
#
SYNOPSIS:
perl dbinsert.pl
#
DESCRIPTION:
This script reads records from a FIFO that is written to by SEC. SEC
puts log text lines, and log analysis lines, in an agreed format, into
the FIFO. This script reads those records, interprets each line and
enters the record into the database.
#
Input lines format is defined in the SEC configuration rule files.
SEC uses the 'write' statement to write to the FIFO defined as '%F',
taken from $ENV{'SECFIFO'} in the environment. This fifo is setup at
runtime during the SEC startup event rules. See the sedb System
configuration file for more information.
#
RETURN CODES:
None- This script should operate as a background daemon process and
should never exit.
#
SEE ALSO:
sedb configuration file
#
###

$| = 1; # Set for unbuffered operation.

#
Create our pid file

$piddir = $ENV{'SECRUNDIR'};

$pidfile = "${piddir}/dbinsert.pid";

open PIDFILE, "> $pidfile" or die "Can't open pidfile [$pidfile] : $!";
print PIDFILE "$$\n";
close PIDFILE;

use strict;
use Socket;
use DBI();
use Digest::MD5 qw(md5_hex);

my $inputline;
my $in_control_word;
my $in_hostname;
my $fifo_name;

my $in_type;
my $in_level;
my $in_analysis;
my $in_remainder;

print "Start of dbinsert.pl\n";

Connect to the database.
my $dbh = DBI->connect("DBI:mysql:database=sedb;host=localhost",
 "root", "dummy",
 {'RaiseError' => 1});

#
Always use lower case for all column names.
#
$dbh->{FetchHashKeyName} = 'NAME_lc';

#
Create 'prepare' statements.

Statement to insert a logalysis record.

my $la_insert_rec = $dbh->prepare("INSERT INTO loganalysis VALUES
(?,?,?,?,?,?,?)")
 or die "Can't prepare la_insert_rec statement: $DBI::errstr";

#
Statement to insert a logtext record.

my $lt_insert_rec = $dbh->prepare("INSERT INTO logtext VALUES (?,?,?,?,?)")
 or die "Can't prepare lt_insert_rec statement: $DBI::errstr";

#
The FIFO is defined through the environment in the sedb.sh setup script.

$fifo_name = $ENV{'SECFIFO'};

We pretend to be a writer to the FIFO to keep it open across open/close by SEC
open(FIFO, "+< $fifo_name") or die "*** FATAL fifo [$fifo_name] problem! $!";

while (<FIFO>)
{
 $inputline = $_;

 chop $inputline;
print "Got: [$inputline]\n";
 print ".";

 #
 # Format is:
 # ANL|hostname|type|level|analyzed_text
 # or
 # LOG|hostname|log_text
 #---

 ($in_control_word,$in_hostname,$in_remainder) = split /\|/, $inputline, 3;

#
Add a log text record

 if ($in_control_word =~ /^LOG/)
 {
 &addlogtextrec($in_hostname,$in_remainder);
 next;
 }

#
Add a loganalysis record

 if ($in_control_word =~ /^ANL/)
 {
 ($in_type, $in_level, $in_analysis) = split /\|/, $in_remainder, 3;

 if ($in_level =~ /(^RED)|(^ORANGE)|(^YELLOW)/) # GREEN is not logged
 {
 &addloganalrec($in_hostname,$in_type,$in_level,$in_analysis);
 next;
 }

 else
 {
 print "***Error: unknown level: [$inputline]\n";
 next;
 }
 }

 if($in_control_word !~ /^LOG/ &&
 $in_control_word !~ /^ANL/)
 {
 print "***Error: unknown control_word: [$inputline]\n";
 next;
 }

} # end while(<FIFO>)

Never reached...
exit(1);

#
#
addloganalrec()

#

sub addloganalrec()
{
 my $ins_hostname = shift @_;
 my $ins_type = shift @_;
 my $ins_level = shift @_;
 my $ins_rec = shift @_;
 my $la_md5;

if ($ins_hostname ne "")
{
print "addloganalrecord:[$ins_hostname] [$ins_type] [$ins_level] [$ins_rec]\
n";
}

 $la_md5 = md5_hex($ins_rec);

 $la_insert_rec->execute(undef, # needed by DBI
 $ins_hostname, # device fqdn
 undef, # date inserted
 $ins_type, # threat type LoggingDisabled, etc.
 $ins_rec, # The Message "bad things happened"
 $ins_level, # threat level ORANGE, RED, etc.
 $la_md5) # msg hash
 or die "Can't execute la_insert_rec statement: $DBI::errstr";

}

#
#
addlogtextrec()

#

sub addlogtextrec()
{
 my $ins_hostname = shift @_;
 my $ins_logtext = shift @_;
 my $lt_md5;

if ($ins_hostname ne "")
{
print "addlogtextrec:[$ins_hostname] [$ins_logtext]\n";
}

 $lt_md5 = md5_hex($ins_logtext);

 $lt_insert_rec->execute(undef,
 $ins_hostname, # Hostname
 undef, # Current date and time.
 $ins_logtext, # The Message

 $lt_md5) # msg hash
 or die "Can't execute lt_insert_rec statement: $DBI::errstr";

}

5.3.8 Startup Scripts

An script that provides the proper environment:

##
#
NAME:
sedbvars.sh - script to pull in needed environment variables.
#
#
SYNOPSIS:
. ./sedbvars.sh
#
DESCRIPTION:
#
This script contains environment variables used in the sedb logging and
monitoring system. The environment variables can be pulled into the
current shell using the '. ./sedbvars.sh' command from the current directory.
#
Directories
TLDIR Base directory for normal use.
SECCONFDIR Directory for SEC configuration files.
SECSCRIPTSDIR Directory for Logging and Monitoring system scripts.
SECRUNDIR Directory for local process use (pid files).
SECTMPDIR Temorary directory for SEC dump and log files.
SECWORKDIR Directory for miscellaneous data files.
#
##

#
Get argument if it exists.
#

ARG=$1

Directories.

Top level directory.
SET THIS FOR YOUR SYSTEM BEFORE USING!

TLDIR=/home/foouser/SEC-examples/sedb
export TLDIR

SECCONFDIR=$TLDIR/conf
SECRUNDIR=$TLDIR/run
SECSCRIPTSDIR=$TLDIR/scripts
SECTMPDIR=$TLDIR/tmp
SECWORKDIR=$TLDIR/work
export SECCONFDIR SECSCRIPTSDIR SECRUNDIR SECTMPDIR SECWORKDIR

#
Other important files- the input logfile and output fifo
#

#BSD SECINPUTDIR=/var/log
#Solaris SECINPUTDIR=/var/adm
#Testing SECINPUTDIR=./test

SECINPUTDIR=$TLDIR/work
SECINPUTFILE=messages
export SECINPUTDIR SECINPUTFILE

SECFIFO=$SECWORKDIR/SEC_fifo
export SECFIFO

#
Common OS utils.
#

#BSD /bin/foo

#Solaris /usr/bin/foo

CAT=/bin/cat
COPY=/bin/cp
CHMOD=/bin/chmod
PERL=/usr/bin/perl

PS=/bin/ps
PSARGS=-ax

export CAT COPY CHMOD PERL PS PSARGS

#
Take a look with showvars

showvars() {
echo
echo TLDIR=$TLDIR
echo SECCONFDIR=$SECCONFDIR
echo SECRUNDIR=$SECRUNDIR
echo SECSCRIPTSDIR=$SECSCRIPTSDIR
echo SECTMPDIR=$SECTMPDIR
echo SECWORKDIR=$SECWORKDIR
echo
echo
echo SECINPUTDIR=$SECINPUTDIR
echo SECINPUTFILE=$SECINPUTFILE
echo
echo SECFIFO=$SECFIFO
echo
echo CAT=$CAT
echo COPY=$COPY
echo CHMOD=$CHMOD
echo PERL=$PERL
echo
echo PS=$PS
echo PSARGS=$PSARGS
echo
echo "End of sedbvars.sh"
echo
}

["$ARG" = "show"] && showvars

And another one to start it all up and provide some additional useful commands...

#!/bin/sh
###
######
#
NAME:
sedb.sh - script to start, stop and control SEC in the sedb logging and
monitoring system.
#
#
SYNOPSIS:
sh sedb.sh start | stop | dump | hup | abrt
#
DESCRIPTION:
#
'start' starts up the system.
'stop' shuts down the system.
'dump' causes SEC to dump its internal tables to tmp/sec.dump
'hup' causes SEC to reread its configuration files and
reinitialize everything
'abrt' causes SEC to reread its configuration files without reinitilizing
contexts and variables.
#
###
######

#set -x

Pull in the environment from ./sedbvars.sh

if [! -f ./sedbvars.sh]
then

 echo "*** Error- ./sedbvars.sh environment script not found. Check
configuration."
 exit
fi

case "$1" in
'start')

 echo
 echo "Start of SEDB Logging and Monitoring System. Please wait..."
 #
 # Get our environment and list it out
 #
. ./sedbvars.sh list

 # Start dbinsert first to prevent annoying error messages about broken pipe
 if [-f $SECSCRIPTSDIR/dbinsert.pl]
 then
 #
 # Start the dbinsert script.

 echo "Starting dbinsert.pl..."

 $PERL $SECSCRIPTSDIR/dbinsert.pl > /dev/null 2>&1 &

 sleep 2

 RC=`$PS $PSARGS | grep dbinsert | grep -v grep`
 if [$? != 0]
 then
 echo "**** ERROR: dbinsert did not start."
 echo " To fix: start dbinsert by hand."
 fi
 fi

 if [-f $SECSCRIPTSDIR/sec.pl]
 then
 #
 if [! -f $SECCONFDIR/System.conf \
 -a -f $SECCONFDIR/First.conf \
 -a -f $SECCONFDIR/Second.conf]; then
 echo "ERROR: sec.pl configuration files missing!! Check
installation."
 exit 1;
 fi
 #
 #
 $PERL $SECSCRIPTSDIR/sec.pl \
 -conf=$SECCONFDIR/System.conf \
 -conf=$SECCONFDIR/First.conf \
 -conf=$SECCONFDIR/Second.conf \
 -testonly

Config checking is available in sec 2.1.9 and later ONLY.

 if [$? -ne 0];
 then
 echo "ERROR: sec.pl configuration files faulty!! Check
configuration."
 exit 1;
 fi
 #

 echo 'SEDB Logging and Monitoring Service Starting....'

 $COPY /dev/null $SECTMPDIR/sec.log

 $PERL $SECSCRIPTSDIR/sec.pl \
 -conf=$SECCONFDIR/System.conf \
 -conf=$SECCONFDIR/First.conf \
 -conf=$SECCONFDIR/Second.conf \
 -debug=4 \
 -dump=$SECTMPDIR/sec.dump \
 -log=$SECTMPDIR/sec.log \
 -pid=$SECRUNDIR/sec.pid \
 -intevents \
 -input=$SECINPUTDIR/$SECINPUTFILE \
 -detach

#
#Use one of the lines below for interactive input (for testing)

-input=$TPDIR/t.t \
-input=./t.t \

 sleep 1
 echo ""
 echo "SEC Monitoring System Started."
 echo ""

 else
 echo "ERROR: $SECSCRIPTSDIR/sec.pl missing!! Check installation."
 exit 1;
 fi

 echo "Done."

 ;;

'stop')
 #
 # Get our environment and don't list it out
 #
. ./sedbvars.sh

 for prog in sec dbinsert
 do

 if [-f $SECRUNDIR/${prog}.pid]
 then
 pid=`$CAT $SECRUNDIR/${prog}.pid`
 ["$pid" -gt 0] && kill -TERM $pid && echo "Killed $prog pid
$pid"
 rm -f $SECRUNDIR/${prog}.pid
 else
 # Was pid file removed? Check here and kill prog if running...
 pid=`$PS $PSARGS | grep $prog | grep -v grep | awk '{print
$1}'`
 [$pid] && kill -TERM $pid
 echo
 echo "$prog not running"
 echo
 fi

 done

 ;;

'dump')
 #
 # Get our environment and don't list it out
 #
. ./sedbvars.sh

 if [-f $SECRUNDIR/sec.pid]; then
 secpid=`$CAT $SECRUNDIR/sec.pid`
 ["$secpid" -gt 0] && kill -USR1 $secpid
 fi
 ;;

'hup')
 #
 # Get our environment and don't list it out
 #
 . ./sedbvars.sh

 if [-f $SECRUNDIR/sec.pid]; then
 secpid=`$CAT $SECRUNDIR/sec.pid`
 ["$secpid" -gt 0] && kill -HUP $secpid
 fi
 ;;

'abrt')
 #
 # Get our environment and don't list it out
 #
. ./sedbvars.sh

 if [-f $SECRUNDIR/sec.pid]; then
 secpid=`$CAT $SECRUNDIR/sec.pid`
 ["$secpid" -gt 0] && kill -ABRT $secpid
 fi

 ;;
'check')
 #
 # Get our environment and list it out
 #
. ./sedbvars.sh list

 for prog in sec dbinsert
 do

 if [-f $SECRUNDIR/${prog}.pid]; then
 pid=`$CAT $SECRUNDIR/${prog}.pid`
 ["$pid" -gt 0] && $PS $PSARGS | grep $pid
 fi

 done

 ;;

*)
 echo "Usage: $0 { start | stop | dump | hup | abrt }"
 exit 1
 ;;
esac

5.4 Putting It All Together
Below is an example run of the sedb database. Comments are shown in parentheses:

$
$. ./sedbvars.sh
$
$showvars

TLDIR=/home/foouser/SEC-examples/sedb
SECCONFDIR=/home/foouser/SEC-examples/sedb/conf
SECRUNDIR=/home/foouser/SEC-examples/sedb/run
SECSCRIPTSDIR=/home/foouser/SEC-examples/sedb/scripts
SECTMPDIR=/home/foouser/SEC-examples/sedb/tmp
SECWORKDIR=/home/foouser/SEC-examples/sedb/work

SECINPUTDIR=/home/foouser/SEC-examples/sedb/work
SECINPUTFILE=messages

SECFIFO=/home/foouser/SEC-examples/sedb/work/SEC_Fifo

CAT=/bin/cat
COPY=/bin/cp
CHMOD=/bin/chmod
PERL=/usr/bin/perl

PS=/bin/ps
PSARGS=-ax

End of sedbvars.sh

$
$

(Stop the sedb system first...)

$sh sedb.sh stop

sec not running

dbinsert not running

$
$

(Start the sedb system...)

$sh sedb.sh start

Start of SEDB Logging and Monitoring System. Please wait...
Starting dbinsert.pl...
Simple Event Correlator version 2.1.11
Reading configuration from /home/foouser/SEC-examples/sedb/conf/System.conf
5 rules loaded from /home/foouser/SEC-examples/sedb/conf/System.conf
Reading configuration from /home/foouser/SEC-examples/sedb/conf/First.conf
21 rules loaded from /home/foouser/SEC-examples/sedb/conf/First.conf
Reading configuration from /home/foouser/SEC-examples/sedb/conf/Second.conf
10 rules loaded from /home/foouser/SEC-examples/sedb/conf/Second.conf
SEDB Logging and Monitoring Service Starting....
Simple Event Correlator version 2.1.11
Changing working directory to /
Reading configuration from /home/foouser/SEC-examples/sedb/conf/System.conf
Reading configuration from /home/foouser/SEC-examples/sedb/conf/First.conf
Reading configuration from /home/foouser/SEC-examples/sedb/conf/Second.conf

SEC Monitoring System Started.

Done.
$

(Now check again...)

$sh sedb.sh check
 869 ?? Ss 0:00.15 /usr/bin/perl
/home/foouser/SEC-examples/sedb/scripts/sec.pl
-conf=/home/foouser/SEC-examples/sedb/conf/System.conf -conf=/home/foouser/SEC-
example
 860 p0 I 0:00.05 /usr/bin/perl
/home/foouser/SEC-examples/sedb/scripts/dbinsert.pl
$

Once the system is running, it will process input from whereever $SECINPUTDIR/$SECINPUTFILE
is set. In this case it's /home/foouser/SEC-examples/sedb/work/messages. To process
syslog messages, set $SECINPUTDIR to your systems log directory and $SECINPUTFILE to the log
messagesfile in sedbvars.sh and restart the system.

Below are some SQL queries that show the results of one example run. Comments again in
parentheses:

 (Initialize data base...)
mysql> \. sedb.sql
Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Query OK, 0 rows affected (0.00 sec)
Records: 0 Duplicates: 0 Warnings: 0

Query OK, 0 rows affected (0.01 sec)
Records: 0 Duplicates: 0 Warnings: 0

mysql>
mysql>
mysql> show tables;
+----------------+
| Tables_in_sedb |
+----------------+
| loganalysis |
| logtext |
+----------------+
2 rows in set (0.01 sec)

mysql>

mysql> describe logtext;
+------------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+---------------+------+-----+---------+----------------+
lt_record_id	bigint(20)		PRI	NULL	auto_increment
lt_dev_fqdn	varchar(128)	YES		NULL	
lt_date_inserted	timestamp(14)	YES		NULL	
lt_log_text	text	YES	MUL	NULL	
lt_text_md5hash	varchar(32)	YES		NULL	

+------------------+---------------+------+-----+---------+----------------+
5 rows in set (0.00 sec)

mysql>
mysql> describe loganalysis;
+------------------+---------------+------+-----+---------+----------------+
| Field | Type | Null | Key | Default | Extra |
+------------------+---------------+------+-----+---------+----------------+
la_record_id	bigint(20)		PRI	NULL	auto_increment
la_dev_fqdn	varchar(128)	YES		NULL	
la_date_inserted	timestamp(14)	YES		NULL	
la_threat_type	varchar(20)	YES	MUL	NULL	
la_threat_text	text	YES	MUL	NULL	
la_threat_level	varchar(8)	YES	MUL	NULL	
la_md5_hash	varchar(32)	YES		NULL	
+------------------+---------------+------+-----+---------+----------------+
7 rows in set (0.00 sec)

mysql>

 (Start sedb as shown above and put some data into the SEC input file...)

echo "Nov 14 12:14:58 foohost sshd[3388]: fatal: Timeout before authentication for
192.168.1.1" >> messages
echo "Nov 22 02:00:02 foohost syslogd: restart" >> messages

echo "Jun 3 17:46:24 foohost named[38298]: client 10.12.127.176#3714: request has
invalid signature: tsig verify failure" >> messages
echo "Nov 14 12:14:58 foohost sshd[3388]: fatal: Timeout before authentication for
192.168.1.1" >> messages

echo "Jun 3 17:46:24 foohost named[38298]: client 10.12.127.176#3714: request has
invalid signature: tsig verify failure" >> messages
echo "May 25 18:09:55 foohost ntpd[1325]: ntpd exiting on signal 11" >> messages

 (Get record counts from tables...)

mysql>
mysql> select count(*) from logtext;
+----------+
| count(*) |
+----------+
| 6 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from loganalysis;
+----------+
| count(*) |
+----------+
| 5 |
+----------+
1 row in set (0.00 sec)

mysql>
mysql>

 (Show data with SQL query...)

mysql> select la_record_id,
la_dev_fqdn,la_date_inserted,la_threat_type,la_threat_text,la_threat_level
 -> from loganalysis ;
+--------------+-------------+------------------+----------------
+--

--+-----------------+
| la_record_id | la_dev_fqdn | la_date_inserted | la_threat_type | la_threat_text
| la_threat_level |
+--------------+-------------+------------------+----------------
+--

--+-----------------+
| 1 | foohost | 20040725222340 | MONITOR |
CORR:USERACT+MONITOR:(sshd fatal problem, text: : Timeout before authentication for
192.168.1.1 at Sun Jul 25 22:23:40 2004)+(syslog restart at Sun Jul 25 22:23:40
2004) | YELLOW |
| 2 | foohost | 20040725222357 | USERACT |
CORR:NETWACT+USERACT:(dyndns attempt from 10.12.127.176#3714, text: tsig verify

failure at Sun Jul 25 22:23:56 2004)+(sshd fatal problem, text: : Timeout before
authentication for 192.168.1.1 at Sun Jul 25 22:23:56 2004) | YELLOW |
| 3 | foohost | 20040725222410 | COMPROM | ntpd crashed on
signal 11 at Sun Jul 25 22:24:10 2004
| RED |
| 4 | foohost | 20040725222410 | COMPROM |
CORR:NETWACT+COMPROM:(dyndns attempt from 10.12.127.176#3714, text: tsig verify
failure at Sun Jul 25 22:24:10 2004)+(ntpd crashed on signal 11 at Sun Jul 25
22:24:10 2004) | RED |
| 5 | foohost | 20040725222410 | COMPROM |
CORR:NETWACT+COMPROM:(dyndns attempt from 10.12.127.176#3714, text: tsig verify
failure at Sun Jul 25 22:23:56 2004)+(ntpd crashed on signal 11 at Sun Jul 25
22:24:10 2004) | RED |
+--------------+-------------+------------------+----------------
+--

--+-----------------+
5 rows in set (0.00 sec)

mysql>
mysql>

5.5 SEDB Caveats
As shown, sedb isn't all that useful. There are only a handful of syslog messages that are matched and
only three rules that provide correlation. There are also some significant limitations:

• It doesn't properly correlate entries from multiple sources. A USERACT event from one system
should not correlate with a COMPROM event from a different system.

• There is no way to ignore events from a system under test or maintenance. Ideally, we want a
way to take a device temporarily 'out' of the logging and monitoring system, even though we
still get syslog entries from the device.

• One backend database can quickly get overloaded in a busy environment. There should be a
way to dynamically point the data insertion script (dbinsert.pl) to another database.

• There is no way to tell if the system is down, or data is not being received. A heartbeat or
watchdog function is needed to ensure that someone is notified if the database is down, or the
SEC process or data insert process dies.

Nevertheless, a system simlar to this (and addressing the above issues) has been developed and
deployed at a major commercial institution. SEC has proven capable of handling syslog correlation
tasks similar to commercial products costing thousands of dollars.

6 Other Uses For SEC
SEC can be used in other applications such as portknocking, and process control.

6.1 Portknocking
Portknocking combines event correlation and system security by recognizing a certain sequence of
events- in this case attempted connections to closed ports. The idea is to have a system totally closed
(no ports open) and have the system recognize a certain sequence of attempted connections (knocks) on
closed ports- say port 25, port 9966, port 35, port 7000 all from the same source host and all within a

certain time. In effect, the sequence becomes a key. Once the key is recognized the system opens an
incoming port for connection, such as sshd for limited period of time. The source host, and only the
source host is permitted to connect.

A couple of notes before jumping right in: you must run these examples as root, since you will be
attempting to start sshd, which binds to a priviliged port. Also, make sure sshd is not running before
starting this example. Finally, remember that true computer security is composed of many layers. You
should not depend exclusively on portknocking for security.

Portknocking is described in several articles at www.portknocking.org.

6.1.1 A Simple Portknocking Ruleset

To start, consider the following syslog messages from a BSD based system:

Jun 27 15:02:51 foohost /kernel: Connection attempt to TCP 127.0.0.1:7777 from
127.0.0.1:1806 flags:0x02
Jun 27 15:02:58 foohost /kernel: Connection attempt to TCP 127.0.0.1:5555 from
127.0.0.1:4356 flags:0x02

These messages are sent to syslog by the kernel in response to an attempted connection on a closed
port. To see these message, two sysctl variables net.inet.tcp.blackhole and net.inet.udp.blackhole have
to be set. The required commands are:

$ sysctl net.inet.tcp.blackhole=1

and

$ sysctl net.inet.udp.blackhole=1

A ruleset that recognizes these messages is:

#
Portknocking example 1
#
#BSD Jun 27 15:02:58 foohost /kernel: Connection attempt to TCP 127.0.0.1:5555 from
127.0.0.1:4356 flags:0x02
#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: Connection attempt to (\S+) (\S+):(\S+)
from (\S+):(\S+).*
desc=$0
action=write - Found a knock on $2 $3 port $4 from $5

The goal in this example is to start sshd with a 30 second window to accept a connection, and die if no
connection has been received and processed. If a connection is accepted, sshd is to process it and then
die.

Several sshd options are useful in this case. The -d option causes sshd to run in the foreground, process
one connection and then die. The -g seconds option causes sshd to wait seconds from the start of the
connection until the authentication is completed. If there is no authentication during this period, sshd
dies.

The following script accomplishes the above requirements:

#!/bin/sh
#
SEC Portknock example startup script for sshd
#
Start sshd in single shot mode with a 15 second

http://www.portknocking.org/

authentication window.

#set -x
/usr/sbin/sshd -d -g 15 > /dev/null 2>&1 &

Get pid of backgrounded process
PID=$!
#echo PID is $PID

sleep 30

Terminate above sshd process. If a valid connection
was received, and a child process was created to handle
the connection, the child will continue.
kill -TERM $PID
exit 0;

The previous rule recognizes any single knock, writes the output to stdout, but does not perform any
other action. To recognize a complete key, say TCP port 12345 followed within 30 seconds by TCP port
54321 we can use a Pair Rule. The correlated action (action2) can be to run the above script that starts
sshd with apropriate options.

portknock.conf
Portknocking example 2
#
#BSD Jun 27 15:02:58 foohost /kernel: Connection attempt to TCP 127.0.0.1:5555 from
127.0.0.1:4356 flags:0x02
#

type=Pair
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: Connection attempt to (\S+) (\S+):12345
from (\S+):(\S+).*
desc=$0
action=write - first half of key received....
ptype2=RegExp
pattern2=\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: Connection attempt to (\S+) (\S+):54321
from (\S+):(\S+).*
desc2=$0
action2=write - second half received! Starting sshd for 30 seconds...; shellcmd
./opensesame.sh;
window=30

Run this example as follows (without informative debug):

$ perl sec.pl -conf=portknock.conf -input=/var/log/messages -debu=4

Once this example is running, switch to another screen and use telnet to knock on the key ports as
follows:

$ telnet localhost 12345

Then quit immediately using Ctl-C. Then immediately:

$ telnet localhost 54321

and quit immediately again. All this activity should produce the following output on the SEC session:

perl sec.pl -conf=t.conf -input=/var/log/messages -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from t.conf
first half of key received....
second half received! Starting sshd for 30 seconds...
Terminated

During the 30 second window you should be able to ssh into your local machine with your own userid,
i.e.:

$ ssh myuserid@localhost

You should receive a password prompt if you attempt to ssh within the window.

This example uses static port numbers, and recognizes a single key. There is also no outside
authentication of the key. Using the SEC calendar rule, it would be easy to change keys on a regular
basis. SEC contexts could also be used to provide a more robust recognition strategy. You could even
bolt on a complete back-end authentication mechanism using the shellcmd action and elaborate scripts.

6.2 Process Control
Consider an engineering process that must control a motor or other device in response to several kinds
of input, such as temperature, body position, or ambient light. These kinds of input can be modelled by
text input into SEC. Suitable rules that determine how the device is to be controlled can be constructed
according to a correlation map or other plan.

The goal of this example is to construct a running process that responds to some signal that is generated
by SEC according to rules and text input.

The script below simulates a simple motor. It outputs a dot '.' at each inteval determined by the
$throttle variable. Smaller values cause the motor to output it's dot faster, while larger values cause it to
output dots slower. The script is set to resond to two signals- USR1 and USR1. A signal handler for
USR1 adjusts the value of the throttle slower (smaller value), while another handler for USR2 adjusts
the value of the throttle faster (smaller value).

#!/usr/bin/perl
#
motor.pl - simulate a motor with a throttle.
#

sub usage()
{
 print "\nUsage: throttle.pl [num]\n";
 print " Print a dot '.' every num seconds.\n";
 print " Responds to signals USR1 (faster) and USR2 (slower).\n";
 exit 1;
}

$throttle = shift (@ARGV);

if ($throttle =~ /-(h|\?)/)
{
 &usage;
}

if (!($throttle =~ /\d+/))
{
 $throttle = 1;
}

Attempt reset throttle up or down.

Slower
$SIG{USR1} = sub {$throttle += ($throttle > .06) ? .05 :
 (($throttle > .0025) ? .0025 : .0005);
 print STDERR $throttle;};

Faster
$SIG{USR2} = sub {$throttle -= ($throttle > .06) ? .05 :
 (($throttle > .0025) ? .0025 : .0005);
 print STDERR $throttle;};

print STDERR "ProcessID = $$\n";
sleep 1;

while(1)

{
 print STDERR ".";
 select undef, undef, undef, $throttle;
}

To operate, start up the script and observe the process id. In another session, send the process the USR2
signal. For example:

$ kill -USR2 10032

sends the USR2 signal to process 10032. When motor.pl receives the signal, it recalculates the throttle
and runs faster. Repeat the above command several times to see how the process speeds up. Alternately,
send the USR2 signal and see the process slow down.

To apply SEC in this case, consider the following ruleset:

Example motor.conf
Control a motor process from user input.
#
type=Single
ptype=RegExp
pattern=Start (\d+)
desc=$0
action=eval %p ($1)

This rule speeds up the motor process. Sends USR2 signal to process.
type=Single
ptype=RegExp
pattern=^f$
desc=$0
action=eval %r (kill USR2, %p)

This rule slows down the motor process. Sends USR1 signal to process.
type=Single
ptype=RegExp
pattern=^s$
desc=$0
action=eval %r (kill USR1, %p)

The first rule recognizes the process ID, input from the user. The second and third rules recognize
keywords, ``f'' and ``s'' to make the motor go faster or slower. The action sends the appropriate signal to
the process.

Note that in this case, the process control doesn't really start and stop the motor process- it just
manipulates the throttle. However, it would not be hard to contruct a complete control system with a
handful of rules similar to those above.

7 Conclusion
SEC is a verstile event correlation tool that can be used in many ways, and for many different
applications. Hopefully, you now have the required knowledge and understanding to use SEC in your
own applications. Be sure to check the SEC Users email list for up-to-date practices and answers to
common (and not so common) questions.

Special thanks to Risto Vaarandi for providing us all with this unique tool!

http://kodu.neti.ee/~risto/risto.jpg

	Working with SEC- the Simple Event Correlator, Part Two
	Jim Brown
	1 Introduction
	2 Contexts Revisited
	2.1 Logical Operations With Contexts
	2.2 Verifying Contexts and State Information
	2.3 More Mini-Program Examples

	3 Miscellaneous SEC Topics
	3.1 More Uses of SEC Variables
	3.2 Notes on Logging Windows Systems

	4 SEC Performance
	4.1 SEC Performance Issues
	4.2 The SEC Performance Test Framework
	4.3 SEC Test Results

	5 Database Integration
	5.1 Installing MySQL and required Perl Modules
	5.2 Connecting SEC to MySQL
	5.3 The Simple Event Data Base
	5.3.1 The Correlation Map and Strategy
	5.3.2 The sedb First Level Configuration File
	5.3.3 The sedb Second Level configuration File
	5.3.4 The sedb System Configuration File
	5.3.5 The sedb Schema
	5.3.6 IPC Data Format
	5.3.7 The dbinsert.pl Script
	5.3.8 Startup Scripts

	5.4 Putting It All Together
	5.5 SEDB Caveats

	6 Other Uses For SEC
	6.1 Portknocking
	6.1.1 A Simple Portknocking Ruleset

	6.2 Process Control

	7 Conclusion

