
Working with SEC- the Simple Event
Correlator
Jim Brown
 jpb@jimby.name

Copyright © 2003 by Jim Brown

November 23, 2003

SEC is a powerful event correlation engine written entirely in Perl that is capable of handling a wide
variety of event correlation tasks. This article presents a range of examples, from simple to complex,
using SEC for event correlation tasks.

Table of Contents
1 Introduction
2 Getting Started
3 SEC In Depth
4 Using Contexts
5 Applications to Logfile Monitoring
6 Part One Conclusion

1 Introduction
SEC was written by Risto Vaarandi, a professional software developer from Estonia, and is available
from the SEC Home Page. Risto has provided a Manual Page, a FAQ and some Examples that are
helpful in developing advanced solutions. There is also an active Mailing List.

SEC is a perl script which reads an input stream from a file or pipe and applies pattern matching
operations to the input looking for patterns specified by rules, found in configuration files. SEC has
several advanced features that make it ideal for a wide variety of event correlation tasks such as log-file
analysis, state machine operations, logic analysis and more.

This article introduces basic SEC use and operations, using examples from simple to complex. At the
end of this article, the reader should have a solid working knowledge of SEC and be able to create rules
for event correlation operations.

Note: SEC is copyrighted by Risto Vaarandi, (risto.vaarandi@eyp.ee) and is distributed
under the terms of the GNU GPL. Work on SEC is supported by the Union Bank of
Estonia.

http://www.perl.org/
http://lists.sourceforge.net/mailman/listinfo/simple-evcorr-users
http://www.estpak.ee/~risto/sec/examples.html
http://www.estpak.ee/~risto/sec/

2 Getting Started
To get started with SEC, download the latest version from the SEC download page at Sourceforge.
Unpack the tarball, cd into the directory containing the sec.pl perl script.

2.1 A Simple Example
SEC uses a configuration file and takes input from a file or a named pipe. Perform the following steps
to create the first example:

• Create a new text file C2.1.01.conf with your favorite editor, and copy in the following
text:

Example C2.1.01.conf
Recognize a pattern and log it.
#
type=Single
ptype=RegExp
pattern=foo\s+(\S+)
desc=$0
action=logonly

This example illustrates the following:

Single is the rule type. SEC includes several different types of rules that are useful in
event correlation. This rule is of type Single.

RegExp is the pattern type, one of RegExp (for ``Regular Expression'') matching or
SubStr, for simpler string matching.

foo\s+(\S+) is the actual pattern- in this case a perl regular expression pattern. This
pattern matches the word foo followed by one or more spaces, followed by one or more
non-space characters, such as bar, grok, or 1:443z--?. If you are new to perl
regular expressions, you are well advised to read Nicholas Clarks introduction perlretut.

desc is a variable definition for the pattern description. In this case a perl numbered
variable, $0, is set to the entire matched pattern.

The action statement describes the action taken when the pattern is recognized. In this
case, the logonly action simply writes the pattern to the logfile if one is indicated on the
command line, or to standard output if not.

• Save the file (C2.1.01.conf) and execute the following command:

% perl sec.pl -conf=C2.1.01.conf -input=-

This example will take input from directly from the terminal. Type the following lines of input:

foo
foo bar
baz

http://search.cpan.org/~nwclark/perl-5.8.2/pod/perlretut.pod
http://sourceforge.net/project/showfiles.php?group_id=42089
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CO-A01-TYPE
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CO-A01-PTYPE
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CO-A01-PATTERN
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CO-A01-DESC
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CO-A01-ACTION

bar foo
bar foo baz

Notice that SEC responds by replying (logging to standard output) every time a pattern is
matched:

foo
foo bar
foo bar
baz
bar foo
bar foo baz
bar foo baz

In this example, you have created a SEC rule that matches a regular expression, and tested it
with input from the terminal.

• To see how SEC operates on files, instead of standard input, copy the test input above into a
temporary file, T2.1.01.txt. Next, create an empty file that you intend to monitor with
SEC, monitor.me.

Now execute SEC with the following command:

% perl sec.pl -conf=C2.1.01.conf -input=monitor.me

~/sec-2.1.11% perl sec.pl -input=monitor.me -conf=C2.1.01.conf
Simple Event Correlator version 2.1.11
Reading configuration from C2.1.01.conf
1 rules loaded from C2.1.01.conf

SEC is now running in your terminal session, and reading input from monitor.me. In a
separate window, or terminal session in the same directory, perform the following:

% cat T2.1.01.txt >> monitor.me

~/sec-2.1.11% perl sec.pl -input=monitor.me -conf=C2.1.01.conf
Simple Event Correlator version 2.1.11
Reading configuration from C2.1.01.conf
1 rules loaded from C2.1.01.conf
foo bar
bar foo baz
^C

SEC parsed the input that arrived in monitor.me and performed it's actions (logging to
standard output) when it recognized the patterns in the input stream.

This is the basic operation of SEC. In this case, the ``events'' were the arrival of 2 matched
pattern in the input stream. Although this is a simple example, SEC is capable of far more
powerful matching and complex operation.

2.2 Other SEC Actions
SEC has well over a dozen different actions it can perform once it matches a pattern in the input
stream. Some of the actions depend on contexts which will be described in a later section. The
following sections describe the actions that can be used all by themselves.

2.2.1 write
write <filename> [<event text>]

This example uses the write action. The write action writes the specified text to the named filename.

Copy

Example C2.2.1.01.conf
Recognize a pattern and write to a file.
Writes $0 Complete matched pattern, to file.
#

type=Single
ptype=RegExp
pattern=foo\s+(\S+)
desc=$0
action=write - Hello from SEC. Matched text was $0

to C2.2.1.01.conf. Note that the action statement now reads:

action=write - Hello from SEC. Matched text was $0

A filename of ``-'' means write to standard output.

Save C2.2.1.01.conf and run the example with input taken from standard input:

% perl sec.pl -conf=C2.2.1.01.conf -input=-

Type the matched pattern:

foo baz

and you should see the new action statement thus:

~/SEC-examples%perl sec.pl -conf=C2.2.1.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.1.01.conf
1 rules loaded from C2.2.1.01.conf
foo baz
Writing event 'Hello from SEC. Matched text was foo baz' to file -
Hello from SEC. Matched text was foo baz

The line

Writing event 'Hello from SEC. Matched text was foo baz' to file -

is an example of SEC informative debug output. To prevent SEC from writing it's informative output,
change the debug level with the addition of the -debug=n command line parameter:

% perl sec.pl -conf=C2.2.1.01.conf -input=- -debug=4

A level of -debug=4 outputs only notification messages and lower levels of debug output as in:

~/SEC-examples%perl sec.pl -conf=C2.2.1.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.1.01.conf
foo baz
Hello from SEC. Matched text was foo baz
^C

2.2.2 shellcmd
shellcmd <shellcmd>

The shellcmd action causes SEC to execute a shell command. The shell command can be any
executable program permitted by normal user privileges.

Copy the following small shell script into S2.2.2.01.sh.

#!/bin/sh
Shell command for Example C2.2.2.01.conf
#
echo "Start of S2.2.2.01.sh shell script"
echo "Finding number of files in directory..."
ls | wc -l
echo "End of shell script"

Now copy the following SEC configuration into C2.2.2.01.conf.

Example C2.2.2.01.conf
Recognize a pattern and run a shell script.
#

type=Single
ptype=RegExp
pattern=foo\s+(\S+)
desc=$0
action=shellcmd S2.2.2.01.sh

Run with:

% perl sec.pl -conf=C2.2.2.01.conf -input=-

If the shell command is not executable at all, SEC will indicate with the warning:

Rule in C2.2.2.01.conf at line 5: Warning - '/home/jpb/SEC-examples/S2.2.2.01.sh'
is not executable

If other errors prevent operation of the command, SEC will indicate with suitable warning or error
messages. Otherwise, when SEC matches the pattern in the input stream, it will execute the script as
requested:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C2.2.2.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.2.01.conf
1 rules loaded from C2.2.2.01.conf
foo bar
Executing shell command '/home/jpb/SEC-examples/S2.2.2.01.sh'
Child 14809 created for command '/home/jpb/SEC-examples/S2.2.2.01.sh'
Start of S2.2.2.01.sh shell script
Finding number of files in directory...
 33
End of shell script
^C

Control of the extra debug output is similar to that described above.

Note: User programs or scripts that are run with the shell or spawn (see below) actions
must be in the PATH available to SEC at run time and not just in the current directory
where SEC was started. In particular, if SEC is started with the -detach option (described in
Section 3) to make it a daemon process, the working directory for SEC is changed to the
root directory.

Use of fully qualified path names for scripts is recommended.

2.2.3 spawn
spawn <shellcmd>

The spawn action is identical to the shellcmd action, except that output from the command is fed back
into SEC for pattern matching.

Copy the following into C2.2.3.01.conf:

Example C2.2.3.01.conf
Recognize a pattern and use the spawn action.
#

type=Single
ptype=RegExp
pattern=foo\s+(\S+)
desc=$0
action=spawn /home/jpb/SEC-examples/S2.2.3.01.sh

This rule will match part of the output of S2.2.3.01.sh
type=Single
ptype=RegExp
pattern=ABCD_(.*)
desc=$0
action=write - Matched $0 from $1

Now copy the following to S2.2.3.01.sh:

#!/bin/sh
Shell command for Example C2.2.3.01.conf
#
echo "Start of S2.2.3.01.sh shell command"
echo "ABCD_"$$
echo "End of shell script"

The C2.2.3.01.conf rule file now contains two rules. The first rule matches the same pattern as
the previous examples, and will spawn the shell script S2.2.3.01.sh when triggered.

The second rule matches the pattern ABC_(.*), meaning match ABCD_ followed by any string of
characters until the end of the line.

The S2.2.3.01.sh script executed by the first rule echos a start banner then executes the line

echo "ABCD_"$$

echoing literal ABCD_ followed by the process ID of the shell script.

We will need the informational debug output, so use the command:

% perl sec.pl -conf=C2.2.3.01.conf -input=-

Assuming no errors, the output looks like this:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C2.2.3.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.3.01.conf
2 rules loaded from C2.2.3.01.conf
foo bar
Spawning shell command '/home/jpb/SEC-examples/S2.2.3.01.sh'
Child 14893 created for command '/home/jpb/SEC-examples/S2.2.3.01.sh'
Creating event 'Start of S2.2.3.01.sh shell command' (received from child 14893)
Creating event 'ABCD_14893' (received from child 14893)
Creating event 'End of shell script' (received from child 14893)
Writing event 'Matched ABCD_14893 from 14893' to file -
Matched ABCD_14893 from 14893
^C

The debug output shows how child process 14893 was created by SEC when the first pattern was
matched. The next three lines indicate ``Creating event ...'' for each line of output by the
S2.2.3.01.sh script.

The ``Writing event ...'' line indicates that the second rule has matched its pattern. Finally, the
pattern itself is written to standard output by the second rule action statement. This feedback
mechanism can be very useful in many event correlation tasks.

spawn is quite often used to create multiple input streams for SEC to process. See Section 3.3 for an
example of this usage.

2.2.4 assign And eval
assign %<letter> [<text>]

eval %<letter> <code>

Both assign and eval deal with ``% <letter>'' variables. These special variables are of the form ``%n''
where ``n'' is a single letter from the set ``[A-Za-z]''. These variables are not perl hashes. They are
internal SEC variables that can be used in rules. SEC reserves the following special variables:

Variable Description
%s The event description string- that is, the entire matched pattern if the parameter is ``$0''.

Otherwise it is the entire operand of the desc parameter, including backreference
substitutions if any.

%t Textual timestamp, as returned by date(1)
%u Numeric timestamp, as returned by time(2)
Special variables have global scope across multiple SEC rule files. If an assignment is made by either
the assign or eval actions, SEC maintains that assignment for the life of the program or until the next
assignment to that variable.

Copy the following to C2.2.4.01a.conf:

Example C2.2.4.01a.conf
Recognize a pattern and use the assign and eval actions.
#
type=Single
ptype=RegExp
pattern=foo
desc=$0

action=assign %f Mary had a little lamb,

Copy the following to C2.2.4.01b.conf:

Example C2.2.4.01b.conf
This rule uses the eval action to assign its variable.
type=Single
ptype=RegExp
pattern=bar
desc=$0
action=eval %h ($t = "its fleece had neon glow")

Copy the following to C2.2.4.01c.conf:

Example C2.2.4.01c.conf
This rule uses the write action to write %f, %h, and %t
type=Single
ptype=RegExp
pattern=baz
desc=$0
action=write - %f %h at %t

Note that the patterns for this example have been simplified to match just the single words ``foo''
``bar'' and ``baz''.

For this example, SEC must be told to use all three configuration files:

% perl sec.pl -conf=C2.2.4.01a.conf \
 -conf=C2.2.4.01b.conf \
 -conf=C2.2.4.01c.conf \
 -input=-

and input the three words in order:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C2.2.4.01a.conf \
> -conf=C2.2.4.01b.conf \
> -conf=C2.2.4.01c.conf \
> -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.4.01a.conf
1 rules loaded from C2.2.4.01a.conf
Reading configuration from C2.2.4.01b.conf
1 rules loaded from C2.2.4.01b.conf
Reading configuration from C2.2.4.01c.conf
1 rules loaded from C2.2.4.01c.conf
foo
Assigning value 'Mary had a little lamb,' to variable '%f'
bar
Evaluating code '$t = "its fleece had a neon glow"' and setting variable '%h'
Assigning value 'its fleece had a neon glow' to variable '%h'
baz
Writing event 'Mary had a little lamb, its fleece had a neon glow at Thu Nov 20
04:34:32 2003' to file -
Mary had a little lamb, its fleece had a neon glow at Thu Nov 20 04:34:32 2003
^C

Each variable assignment is shown by the debug output. The ``%t'' variable is set automatically by
SEC.

2.2.5 event
event [<time>] [<event text>]

Finally, there is the event action. event allows the insertion of input to SEC from inside SEC itself. It is
a simple feedback mechanism- one controlled by SEC's own rules. The time parameter is the number of
seconds to wait before inserting the event text into SEC's input stream. For non-zero time values this is,
in effect, asynchronous in that other input events can be processed between the time the event action is
called and the time the event text is recognized. Both cases are considered below.

Note that this example also introduces the capability to use multiple actions (separated by a ``;'') within
the same rule.

First, copy the following to C2.2.5.01.conf:

Example C2.2.5.01.conf
Use the event action to queue input in the future.
Also an example of using multiple actions, and
$variable usage.
#
type=Single
ptype=RegExp
pattern=foo
desc=$0
action=event 5 baz is now matched. ; \
 write - foo matched at %t. baz event in 5 seconds...

type=Single
ptype=RegExp
pattern=bar
desc=$0
action=write - $0 is matched.

This rule will match the 'baz' event in rule 1
type=Single
ptype=RegExp
pattern=baz
desc=$0
action=write - %s matched at %t

Run with:

% perl sec.pl -conf=C2.2.5.01.conf -input=-

Enter the first input pattern ``foo'' and then immediately enter the second input pattern ``bar''. Then
wait and observe that SEC processes the input for ``baz'' after the requested delay of 5 seconds.

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C2.2.5.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.5.01.conf
3 rules loaded from C2.2.5.01.conf
foo
Writing event 'foo matched at Sat Nov 15 07:03:10 2003. baz event in 5 seconds...'
to file -
foo matched at Sat Nov 15 07:03:10 2003. baz event in 5 seconds...
bar
Writing event 'bar is matched.' to file -
bar is matched.
Creating event 'baz is now matched.'
Writing event 'baz is now matched. matched at Sat Nov 15 07:03:15 2003' to file -
baz is now matched. matched at Sat Nov 15 07:03:15 2003
^C

For a time value of zero however, SEC processes events immediately- even before the next line of input
from the input stream. To demonstrate this, change action lines in the first rule to read:

action=event 0 baz is now matched.; \
 write - foo matched at %t.

and rerun the example.

The output now becomes:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C2.2.5.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C2.2.5.01.conf
3 rules loaded from C2.2.5.01.conf
foo
Creating event 'baz is now matched.'
Writing event 'foo matched at Sat Nov 15 07:13:35 2003.' to file -
foo matched at Sat Nov 15 07:13:35 2003.
Writing event 'baz is now matched. matched at Sat Nov 15 07:13:35 2003' to file -
baz is now matched. matched at Sat Nov 15 07:13:35 2003
bar
Writing event 'bar is matched.' to file -
bar is matched.
^C

This ordering of event is true even when input is read from a fast input stream.

3 SEC In Depth
SEC has many parameters that control it's operation. These are viewed by simply calling SEC with no
parameters:

% perl sec.pl

Version: 2.1.11

Usage:
 sec.pl -input=<inputfile> -conf=<conffile pattern> ...

Optional flags:
 -input_timeout=<input timeout>
 -timeout_script=<timeout script>
 -reopen_timeout=<reopen timeout>
 -poll_timeout=<poll timeout>
 -blocksize=<io block size>
 -log=<logfile>
 -debug=<debuglevel>
 -pid=<pidfile>
 -dump=<dumpfile>
 -cleantime=<clean time>
 -bufsize=<input buffer size>
 -evstoresize=<event store size>
 -quoting, -noquoting
 -tail, -notail
 -fromstart, -nofromstart
 -detach, -nodetach
 -intevents, -nointevents
 -testonly, -notestonly

Obsolete flags:
 -separator=<separator>

All options are fully described in the SEC Manual Page. Options of the form -name=value are
required to have a value. As noted above the ``-conf=<conffile pattern>'' and ``-input=<inputfile>''

http://www.estpak.ee/~risto/sec/sec.pl.html

options are required when executing perl sec.pl. A brief review of some of the more common options
follows:

Option Description
-log=<logfile> This option specifies the location of a logfile that SEC uses to track it's operation,

such as pattern matches, actions, etc. The volume of information is controlled by the
-debug option.

-
debug=<debugl
evel>

This option controls how verbose SEC is as it tracks it's operation. The values range
between 1 (critical messages) and 6 (debug messages). Each level includes output
from lower levels.

-pid=<pidfile> This option provides for the location of a process ID file. SEC will write it's process
ID to this file upon startup.

-
dump=<dumpfi
le>

This option provides for the location of a dump file where SEC can dump its internal
data structures, variables and other information upon receipt of the USR1 signal. The
default location is /tmp/sec.dump.

-detach Specifying this option causes SEC to detach itself from the controlling terminal and
run as a daemon process. The default is -nodetach.

-intevents This option causes SEC to perform special processing at startup. This special
processing is described in the SEC man page.

-testonly The ``-testonly'' option can be used to test for syntax errors in configuration files. It
does not start SEC for operation.

The above options are the most common in ordinary usage. See the Manual Page for more information
on these and other options.

3.1 SEC Rule Types
SEC contains several rule types (other than Single introduced in Section 2) for event correlation. The
following table lists the other rule types and gives a short summary of each:

Rule Type Description
SingleWithScript The SingleWithScript rule integrates external scripts with SEC pattern

matching, not as an action as used in Section 2.2.2. Its rule definition is
similar to the Single rule, with the exception of an additional script parameter.

SingleWithSuppress The SingleWithSuppress rule implements compression of multiple matched
events into a single event. Its rule definition is also similar to the Single rule,
with the exception of an additional window parameter.

Pair The Pair combines two or more events into a single event within a given time
window. The rule definition for Pair contains several new parameters.

PairWithWindow The PairWithWindow also correlates two or more events inside a time
window. The rule definition for PairWithWindow is similar to the Pair.

SingleWithThreshold The SingleWithThreshold rule counts matching events within a time window
up to a threshold. When the threshold is reached an action is executed and
further matching events after the threshold are ignored for the remainder of
the time window.

SingleWith2Thresholds The SingleWith2Thresholds rule counts matching events within time window
t1 and executes an action when the the first threshold is reached. The count is
reset and matched events are counted for t2 seconds. Execute another action if

http://www.estpak.ee/~risto/sec/sec.pl.html

the count falls below the second threshold within time window t2.
Suppress The Suppress rule suppresses matching input events. This rule has no action,

but simply filters out all matching events.
Calendar The Calendar rule executes an action at specific times. The time parameters

for this rule are similar to cron(8).

3.2 More SEC Rule Examples
This section presents examples of the rules listed in Section 3.1. For the most part, these rules do not
depend on contexts which will be covered in a later section.

Some of the rules will require input from different sessions at the same time. Keep two or three
sessions open to facilitate working with these rules.

3.2.1 SingleWithScript
The SingleWithScript rule combines matching a pattern and the execution of a separate program to
determine if the rule is matched. Running a separate program to validate or confirm whether an event is
valid is often necessary. For example, matching an IP address in a rule and checking whether the IP
address is on a list of valid addresses can not be done by pattern matching in a rule alone. A separate
program is required to determine if the matched IP address is on the list.

Copy the following to C3.2.1.01.conf:

Example C3.2.1.01.conf
Single with script. Pass matched IP address
to script for validation. If valid, execute
action 1; if not valid execute action2.
#
Note: change script path (and possibly perl path)
to match your system.

type=SingleWithScript
ptype=RegExp
pattern=(\d+)\.(\d+)\.(\d+)\.(\d+)
script=/usr/bin/perl /home/jpb/SEC-examples/S3.2.1.01.pl $0
desc=$0
action=write - IP address $0 matches.
action2=write - IP address $0 does NOT match.

Note that while this RegExp pattern used will match an IP address, it will also match expressions that
are not real IP addresses, such as ``9999.8888.7777.6666''.

Also note that this rule takes two action statements. SEC checks the return value of the called program.
If the program returns a zero value, the action is executed, if non-zero action2 is executed.

Next, copy the following to script S3.2.1.01.pl

#!/usr/bin/perl
#
Script S3.2.1.01.pl - check if IP argument
matches a short list of IP addresses.
Return zero on success, 1 on failure.

@match_list = ('1.2.3.4',
 '2.3.4.5',
 '3.4.5.6'

);

$ip_addr = $ARGV[0] or die "No IP address passed on command line";

foreach $ip (@match_list)
{
 exit (0) if $ip_addr eq $ip;
}

exit 1;

Script S3.2.1.01.pl accepts a single IP address on the command line passed from the matched
rule. If the address matches one of the IPs on its small list of IP addresses, it returns zero, else it returns
1. If there is no IP address at all, the script dies and returns a non-zero value.

Run with:

% perl sec.pl -conf=C3.2.1.01.conf -input=-

Output looks like this:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.1.01.pl -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.1.01.pl
Can't open configuration file C3.2.1.01.pl (No such file or directory)
^C
jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.1.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.1.01.conf
1 rules loaded from C3.2.1.01.conf
1.2.3.4
Child 16396 created for command '/usr/bin/perl /home/jpb/SEC-examples/S3.2.1.01.pl
1.2.3.4'
Child 16396 terminated with exitcode 0
Writing event 'IP address 1.2.3.4 matches.' to file -
IP address 1.2.3.4 matches.
5.6.7.8
Child 16398 created for command '/usr/bin/perl /home/jpb/SEC-examples/S3.2.1.01.pl
5.6.7.8'
Child 16398 terminated with non-zero exitcode 1
Writing event 'IP address 5.6.7.8 does NOT match.' to file -
IP address 5.6.7.8 does NOT match.
^C

More robust IP address matching is possible with the Net::IP_Addr perl module.

3.2.2 SingleWithSuppress
With the SingleWithSuppress rule it is possible to become alerted to an event the first time it is seen,
then ignore the same event within a time window.

Copy the following to C3.2.2.01.conf:

Example C3.2.2.01.conf
Example of SingleWithSuppress
#
type=SingleWithSuppress
ptype=RegExp
pattern=foo
desc=$0
action=write - $0 suppressed for 5 seconds at %t
window=5

Run with:

% perl sec.pl -conf=C3.2.2.01.conf -input=-

and continuously enter ``foo'' as rapidly as possible.

Output:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.2.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.2.01.conf
1 rules loaded from C3.2.2.01.conf
foo
Writing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:38 2003' to file -
foo suppressed for 5 seconds at Sat Nov 15 17:04:38 2003
foo
foo
foo
foo
foo
foo
Writing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:44 2003' to file -
foo suppressed for 5 seconds at Sat Nov 15 17:04:44 2003
foo
foo
foo
foo
foo
foo
Writing event 'foo suppressed for 5 seconds at Sat Nov 15 17:04:50 2003' to file -
foo suppressed for 5 seconds at Sat Nov 15 17:04:50 2003
foo
^C

3.2.3 Pair
The Pair rule handles two different events, matched by two different patterns in its rule definition. The
rule uses a time window which is set upon the first occurrence of event A. If event B occurs within the
time window, events A and B are considered correlated, and the entire rule is considered matched.
Otherwise, the correlation operation for the pair terminates.

There are two action statements, each corresponding to its own pattern. Action one (action) is executed
when event A is matched. Action two (action2) is executed if event B occurs within the time window.

Copy the following to C3.2.3.01.conf:

Example C3.2.3.01.conf
Example Pair rule.
Match event A and B within window.

type=Pair
ptype=RegExp
pattern=foo
desc=$0
action=write - foo matched at %t. Start window of 5 seconds for bar ...
ptype2=RegExp
pattern2=bar
desc2=$0
action2=write - bar matched at %t. bar is within window!
window=5

Run with:

% perl sec.pl -conf=C3.2.3.01.conf -input=-

When running this rule, first enter ``foo'' and ``bar'' close together (i.e. within 5 seconds). Then enter
``foo'' and wait to enter ``bar'' until the window is past (i.e. more than 5 seconds.) The first time the
Pair rule will correlate them together, while the second time they are not correlated.

Output will look similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.3.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.3.01.conf
1 rules loaded from C3.2.3.01.conf
foo
Writing event 'foo matched at Sat Nov 15 18:17:07 2003. Start window of 5 seconds
for bar ...' to file -
foo matched at Sat Nov 15 18:17:07 2003. Start window of 5 seconds for bar ...
bar
Writing event 'bar matched at Sat Nov 15 18:17:09 2003. bar is within window!' to
file -
bar matched at Sat Nov 15 18:17:09 2003. bar is within window!
foo
Writing event 'foo matched at Sat Nov 15 18:17:14 2003. Start window of 5 seconds
for bar ...' to file -
foo matched at Sat Nov 15 18:17:14 2003. Start window of 5 seconds for bar ...
bar
^C

3.2.4 PairWithWindow
At first glance, the PairWithWindow rule appears identical to the Pair rule. Both contain two patterns,
two actions, and a time window.

The difference is that, in PairWithWindow the action2 is executed if events A and B both occur within
the time window. If A occurs, but B does not occur, then action is executed.

Copy the following to C3.2.4.01.conf:

Example C3.2.4.01.conf
Example PairWithWindow rule.
Match both events A and B within window executes action2.
If event B does not occur within window, execute action.

type=PairWithWindow
ptype=RegExp
pattern=foo
desc=$0
action=write - foo matched, bar NOT matched within window.
ptype2=RegExp
pattern2=bar
desc2=$0
action2=write - foo and bar both matched within 5 second window!
window=5

Run with:

% perl sec.pl -conf=C3.2.4.01.conf -input=-

When running this rule, first enter ``foo'' and ``bar'' close together (i.e. within 5 seconds). Then enter
``foo'' and wait to enter ``bar'' until the window is past (i.e. more than 5 seconds.) The first time the
PairWithWindow rule will correlate them together, while the second time they are not correlated.

Output looks like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.4.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.4.01.conf
1 rules loaded from C3.2.4.01.conf
foo
bar
Writing event 'foo and bar both matched within 5 second window!' to file -
foo and bar both matched within 5 second window!

foo
Writing event 'foo matched, bar NOT matched within window.' to file -
foo matched, bar NOT matched within window.
^C

3.2.5 SingleWithThreshold
The SingleWithThreshold rule is used to ``count'' the number of matched events within a time window.
If the number exceeds the threshold, the action is executes

If the number of matched events, does not exceed the threshold within the time window, the time
window ``slides''- that is, start time for the correlation window is moved to the second occurrence of
the matched pattern. This process repeats, until the time window expires with no new matched events.

Copy the following to C3.2.5.01.conf:

Example C3.2.5.01.conf
Example SingleWithThreshold rule.
Match event A thresh number of times in window
and execute action. Slide window if needed
until window expires.

type=SingleWithThreshold
ptype=RegExp
pattern=foo
desc=$0
action=write - foo matched three times in 10 seconds!
window=10
thresh=3

Run with:

% perl sec.pl -conf=C3.2.5.01.conf -input=-

When running this rule, first enter ``foo'' three times close together (i.e. within 10 seconds). The
action will execute.

Then enter ``foo'' slowly, waiting five to eight seconds between each entry. Since there are never three
entries (thresh=3) entered within the sliding window, the rule is not matched and the action is not
executed.

The first time the SingleWithThreshold rule will correlate them together, while the second time they are
not correlated.

Output looks similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.5.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.5.01.conf
1 rules loaded from C3.2.5.01.conf
foo
foo
foo
Writing event 'foo matched three times in 10 seconds!' to file -
foo matched three times in 10 seconds!

foo
foo
foo
foo
foo
foo
^C

3.2.6 SingleWith2Threshds
The SingleWith2Thresholds rule is very similar to the SingleWithThreshold rule, except that we can
now definitely determine when events stop. This is done with a second threshold and a second timer
window.

SingleWith2Thresholds counts the number of matched events and executes action when the number is
above thresh events.

Once this low threshold (watermark) is reached, SEC starts window2 and counts additional matched
events. When the number of events falls below thresh2 events within window2, SEC executes action2.

Note that both windows are sliding windows- that is, the begining time of the window moves to the
time of the next match if the time window of the first match expires.

Copy the following to C3.2.6.01.conf:

Example C3.2.6.01.conf
Example SingleWith2Threshholds rule.
Match thresh A events (go above low watermark) and execute action.
Then switch to thresh2 and window2 to count more A events.
If less than thresh2 A events occur in window2 (stay under high
watermark), execute action2.

type=SingleWith2Thresholds
ptype=RegExp
pattern=foo
desc=$0
action=write - foo hit low watermark (3) at time %t
window=5
thresh=3
desc2=$0
action2=write - foo stayed under high watermark (5) at time %t
window2=10
thresh2=5

Run with:

% perl sec.pl -conf=C3.2.6.01.conf -input=-

In this example, it will be necessary to time your entries fairly closely. The first example shows three
matched events followed by action, then less than thresh2 (5 events) within window2 (10 seconds).

The second example shows multiple events after the low watermark then a marked slowing of entries,
that results in action2.

Output from this example:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.6.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.6.01.conf
1 rules loaded from C3.2.6.01.conf
foo
foo
foo
Writing event 'foo hit low watermark (3) at time Mon Nov 17 09:42:05 2003' to file
-
foo hit low watermark (3) at time Mon Nov 17 09:42:05 2003
foo
foo
Writing event 'foo stayed under high watermark (5) at time Mon Nov 17 09:42:16
2003' to file -
foo stayed under high watermark (5) at time Mon Nov 17 09:42:16 2003

foo
foo
foo
Writing event 'foo hit low watermark (3) at time Mon Nov 17 09:42:22 2003' to file
-
foo hit low watermark (3) at time Mon Nov 17 09:42:22 2003
foo
foo
foo
foo
foo
foo
foo
foo
foo
foo
foo
foo
foo
foo
foo slowing way down...
foo
foo
Writing event 'foo stayed under high watermark (5) at time Mon Nov 17 09:42:49
2003' to file -
foo stayed under high watermark (5) at time Mon Nov 17 09:42:49 2003
^C

3.2.7 Suppress
The Suppress rule is very intuitive- events matching the pattern are suppressed. Since this rule has no
action statement, it does nothing.

Suppress is particularly useful with the context parameter. Contexts are discussed in Section 4, and an
additional example of Suppress can be found there. This example does not depend on the use of
contexts.

Copy the following to C3.2.07.01.conf:

Example C3.2.7.01.conf
Example of Suppress.
First rule suppresses 'foo'.
Second rule matches any pattern and
executes write action.

type=Suppress
ptype=RegExp
pattern=foo
desc=$0

type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=write - entry was: $0

Run with:

% perl sec.pl -conf=C3.2.7.01.conf -input=-

In this example, the first rule suppresses ``foo'' while the second rule matches any pattern and writes it
to standard output. Since ``foo'' is already suppressed by the first rule, it will never be written by the
second rule.

Output looks similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.7.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.7.01.conf
2 rules loaded from C3.2.7.01.conf
bar
Writing event 'entry was: bar' to file -
entry was: bar
baz
Writing event 'entry was: baz' to file -
entry was: baz
foo
foo
foo
bar
Writing event 'entry was: bar' to file -
entry was: bar
baz
Writing event 'entry was: baz' to file -
entry was: baz
^C

3.2.8 Calendar
The Calendar rule is another easy to understand rule. It executes action statements at specific times.
The time specification is similar to that used by cron(8), and is detailed in crontab(5).

Note that the time specifications do not include the Vixie cron extensions.

Copy the following to C3.2.8.01.conf:

Example C3.2.8.01.conf
Example calendar rule.
Write a message every minute.

type=Calendar
time=* * * * *

desc=$0
action=write - The time is now: %t

This example takes no user input. However, the ``-input'' parameter must still be present on the
command line. Run with:

% perl sec.pl -conf=C3.2.8.01.conf -input=-

Output is similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.2.8.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.2.8.01.conf
1 rules loaded from C3.2.8.01.conf
Writing event 'The time is now: Mon Nov 17 10:40:42 2003' to file -
The time is now: Mon Nov 17 10:40:42 2003
Writing event 'The time is now: Mon Nov 17 10:41:00 2003' to file -
The time is now: Mon Nov 17 10:41:00 2003
Writing event 'The time is now: Mon Nov 17 10:42:00 2003' to file -
The time is now: Mon Nov 17 10:42:00 2003
^C

Using the ``-debug=4'' parameter removes the informational debug statements and results in just:

The time is now: Mon Nov 17 10:46:35 2003
The time is now: Mon Nov 17 10:47:00 2003
The time is now: Mon Nov 17 10:48:00 2003
The time is now: Mon Nov 17 10:49:00 2003
The time is now: Mon Nov 17 10:50:00 2003

Note also that SEC invokes the action of all calendar rules at startup, but only at the top of each minute
thereafter. Actions that must not occur too closely together must take this into account.

Running applications from SEC is similar. This example runs a script that checks MD5 checksums on a
list of files every five minutes. The script takes a single parameter- ``MD5_CHECK'':

#
Run the SystemCheck.sh script every five minutes.
#
type=Calendar
time=0,5,10,15,20,25,30,35,40,45,50,55 * * * *
desc=MD5_CHECK
action=shellcmd /home/jpb/SEC-examples/SystemCheck.sh %s

3.3 Multiple Input Streams
This section presents another use of the spawn action- obtaining input from multiple input streams. As
shown in Section 2.2.3, spawn starts another program and redirects the program output as input to SEC.
Both the original input stream and this new input stream are processed by SEC as a single input stream.

To set up SEC to read multiple files, the tail program is often used as in the following example.

Copy the following to C3.3.01.conf:

#
Example C3.3.01.conf
Multiple input files with spawn.
#
#
type=Single
ptype=RegExp
pattern=foo
continue=TakeNext
desc=$0
action=spawn /usr/bin/tail -f ./aaa.in ;\
 spawn /usr/bin/tail -f ./bbb.in ;\
 spawn /usr/bin/tail -f ./ccc.in ;

Match lines beginning with aaa:
type=Single
ptype=RegExp
pattern=^aaa:(.*)
desc=$0
action=write aaa.out %s

Match lines beginning with bbb:
type=Single
ptype=RegExp
pattern=^bbb:(.*)
desc=$0
action=write bbb.out %s

Match lines beginning with ccc:
type=Single
ptype=RegExp
pattern=^ccc:(.*)
desc=$0
action=write ccc.out %s

Match all other lines
type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=write other.out %s

In this example, the spawn action is part of a rule that matches input ``foo''. This means that the spawn
actions will not occur until ``foo'' is recognized in the input stream.

After the tail commands will forward input from their respective files into SEC. SEC will treat all input
streams the same, and parse input from all streams according to all rules.

Note that the input files aaa.in, bbb.in, and ccc.in must exist before running the example. Use
the touch command to create these empty files as follows:

% touch aaa.in bbb.in ccc.in

Note also that the last rule is a catch-all rule: if the input does not get recognized by any other rule, it
will be written to other.out

Run with:

% perl sec.pl -conf=C3.3.01.conf -input=-

The session starts as follows:

jpb@jpb-lt:~/SEC-examples/tmp$perl ../sec.pl -conf=C3.3.01.conf -input=-
Simple Event Correlator version 2.1.11

Reading configuration from C3.3.01.conf
5 rules loaded from C3.3.01.conf
foo
Spawning shell command '/usr/bin/tail -f ./aaa.in'
Child 15940 created for command '/usr/bin/tail -f ./aaa.in'
Spawning shell command '/usr/bin/tail -f ./bbb.in'
Child 15941 created for command '/usr/bin/tail -f ./bbb.in'
Spawning shell command '/usr/bin/tail -f ./ccc.in'
Child 15942 created for command '/usr/bin/tail -f ./ccc.in'
Writing event 'foo' to file other.out
aaa:input from terminal
Writing event 'aaa:input from terminal' to file aaa.out
bbb:input from terminal
Writing event 'bbb:input from terminal' to file bbb.out
ccc:input from terminal
Writing event 'ccc:input from terminal' to file ccc.out
ddd:input from terminal
Writing event 'ddd:input from terminal' to file other.out

So far all input has been from the terminal. In another window or session in the same directory, perform
the following commands:

% echo "aaa:from other session copied into ccc.in" >> ccc.in

% echo "bbb:from other session copied into aaa.in" >> aaa.in

% echo "ddd:from other session copied into bbb.in" >> bbb.in

SEC processes these inputs as well:

Creating event 'aaa:from other session copied into ccc.in' (received from child
15956)
Writing event 'aaa:from other session copied into ccc.in' to file aaa.out
Creating event 'bbb:from other session copied into aaa.in' (received from child
15954)
Writing event 'bbb:from other session copied into aaa.in' to file bbb.out
Creating event 'ddd:from other session copied into bbb.in' (received from child
15955)
Writing event 'ddd:from other session copied into bbb.in' to file other.out
^C

Examine each output file to determine its contents:

jpb@jpb-lt:~/SEC-examples/tmp$cat aaa.out
aaa:input from terminal
aaa:from other session copied into ccc.in

jpb@jpb-lt:~/SEC-examples/tmp$cat bbb.out
bbb:input from terminal
bbb:from other session copied into aaa.in

jpb@jpb-lt:~/SEC-examples/tmp$cat ccc.out
ccc:input from terminal

jpb@jpb-lt:~/SEC-examples/tmp$cat other.out
foo
ddd:input from terminal
ddd:from other session copied into bbb.in

As shown above, SEC parsed the input, regardless of where it came from, and performed the actions
indicated on each matched rule.

3.4 Pipe Output
This section looks at another feature of the write action; writing to a ``named pipe'', also called a ``fifo''.
This feature provides a simple method of inter-process communication (IPC).

Most Unix systems already have the ability to create and use named pipes. With SEC, the only
requirement is that the named pipe must exist before writing to it. Typically this is performed with the
mkfifo or mknod command. Check your system documentation for how to create a named pipe. On
BSD based systems, the command is:

% mkfifo SEC_fifo

This creates a named pipe in the current directory:

prw-r--r-- 1 jpb staff - 0 Nov 15 12:38 SEC_fifo

To be useful, there must be a way to get data out of the named pipe. Copy the following perl script to
file S3.4.01.pl:

#!/usr/bin/perl
#
Example S3.4.01.pl - Script to read data out of a named pipe.
#
$| = 1;
$filename = "./SEC_fifo";
open(FIFO, "+< $filename") or die "fifo $!";
print "Start of S3.4.01.pl. Reading $filename...\n";

while (<FIFO>)
{
 $inputline = $_;
 print "Got: $inputline";
}

This script simply copies whatever it receives from the named pipe to standard output.

Run with:

% perl S3.4.01.pl

The program announces its startup banner and waits for input:

jpb@jpb-lt:~/SEC-examples/tmp$perl S3.4.01.pl
Start of S3.4.01.pl. Reading ./SEC_fifo...

In a separate window or session, create C3.4.01.conf with the following rule:

Example C3.4.01.conf
Recognize any pattern and write to a FIFO.
#
type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=write SEC_fifo %s

Run with:

% perl sec.pl -conf=C3.4.01.conf -input=-

and type some text:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.4.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.4.01.conf
1 rules loaded from C3.4.01.conf
This is
Writing event 'This is' to file SEC_fifo
a test of
Writing event 'a test of' to file SEC_fifo
SEC named pipes.
Writing event 'SEC named pipes.' to file SEC_fifo
^C

The output from the reader script looks like:

jpb@jpb-lt:~/SEC-examples$perl S3.4.01.pl
Start of S3.4.01.pl. Reading ./SEC_fifo...
Got: This is
Got: a test of
Got: SEC named pipes.
^C

SEC will complain if it can't write to the pipe. In this example, the reading script was manually
terminated after the first input line. All remaining lines received an error:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C3.4.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C3.4.01.conf
1 rules loaded from C3.4.01.conf
This is
Writing event 'This is' to file SEC_fifo
another test
Writing event 'another test' to file SEC_fifo
Can't open pipe SEC_fifo for writing event 'another test'!
of SEC named pipes.
Writing event 'of SEC named pipes.' to file SEC_fifo
Can't open pipe SEC_fifo for writing event 'of SEC named pipes.'!
^C

While trivial, this example illustrates the basic mechanism for passing event correlation analysis to
another program. Part Two of this article contains an example of joining SEC with a database system
and uses this technique to pass input into the database.

4 Using Contexts
SEC has the ability to define and use contexts with rules. A context is ``the interrelated conditions in
which something exists or occurs''. In SEC, a context ``exists or occurs'' when it is created by a rule
action. In addition to the actions covered in Section 2.2, SEC provides additional actions that create,
destroy, add to, report on, or otherwise manipulate a context.

Contexts can act as event stores. Events can be added to contexts as they occur. A collection of events
in a context can be input to a script to be saved in a file.

Initially, contexts might be hard to mentally grasp. They are a logical instance of data. They act more
like perl variables- springing into existence when created. In fact, they are implemented as perl hashes.
Their chief characteristic is their logical existence as they relate to rules.

Most rules have a ``context'' parameter that is used to interact with contexts. SEC actually uses this
parameter in two different ways. The operand is either:

• A logical expression containing a context name

• A perl mini-program if the operand begins with a ``=''

Both types are shown below.

Below is a rule that uses a context parameter:
#
type=Single
ptype=RegExp
pattern=foo
context=FOO_CONTEXT
desc=$0
action=logonly

Below is a rule that uses a context mini-program:

#
type=Single
ptype=RegExp
pattern=foo
context= =({my $var = 1; return $var})
desc=$0
action=logonly

FOO_CONTEXT is a context name. The name is tested to see if the context exists as a part of
evaluating whether the rule matches the input.

This rule says:

Match the pattern ``foo'' and if the context named ``FOO_CONTEXT'' exists, execute
the action statement.

This context statement contains a perl mini-program. The operand begins with a ``=''. The perl
mini-program is evaluated (with the perl eval statement) and the return value is checked. If true
(non zero), the context parameter is considered true.

A natural question is: ``How do contexts get created in the first place?'' The answer is that they are
created by another rule.

file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CONTEXTNAME
file:///usr/home/jpb/jpb/hugo/inclined/content/techbits/abitolder/sec/article.html#CONTEXTMINIPROGRAM

4.1 Simple Context Example
The first example in this section simply checks for the existence of a context. If the context exists, the
rule is executed. In order to create the context, a second rule is needed, with the create action to create
the context for the first rule.

Copy the following to C4.1.01.conf:

Example C4.1.01.conf
Context example.
Write action if context named FOO_CONTEXT exists.
Create context with second rule, matching 'bar'
#

type=Single
ptype=RegExp
pattern=foo
context=FOO_CONTEXT
desc=$0
action=write - context exists, writing foo here

type=Single
ptype=RegExp
pattern=bar
desc=$0
action=create FOO_CONTEXT

In this example, ``foo'' is recognized by the pattern in the first rule, but the rule does not trigger until
the context FOO_CONTEXT is created. The context is created by the second rule which matches the
``bar'' pattern, and has an action to create context FOO_CONTEXT.

Run with:

% perl sec.pl -conf=C4.1.01.conf -input=-

Output looks like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.1.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C4.1.01.conf
2 rules loaded from C4.1.01.conf
foo
foo
foo
bar
Creating context 'FOO_CONTEXT'
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
^C

Once the second rule was matched, and the create action was executed, the context FOO_CONTEXT
sprang into existence. After that, the first rule was triggered when pattern ``foo'' was matched in the
input stream.

4.1.1 Context Lifetimes
In the example above, the create action created context FOO_CONTEXT with, by default, infinite
lifetime. The create action actually has the following syntax:

create [<name> [<time> [<action list>]]]

The name is the name of the context. time is the lifetime of the context in seconds. The action list
parameter is a list of any SEC action statements- each action statement separated by semi-colons, ``;''.

To see the effect of the time (context lifetime) parameter, change the line in C4.1.01.conf from

action=create FOO_CONTEXT

to

action=create FOO_CONTEXT 5

This creates context FOO_CONTEXT with a lifetime of 5 seconds. At the end of its lifetime, the context
expires, at which point it is no longer valid. SEC notes the context expiration in its informative debug
output.

Re-running the above example:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.1.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C4.1.01.conf
2 rules loaded from C4.1.01.conf
foo
foo
foo
bar
Creating context 'FOO_CONTEXT'
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
Deleting stale context 'FOO_CONTEXT'
foo
foo
foo
^C

Here context FOO_CONTEXT did not exist until the second rule was matched (by matching ``bar'') at
which time it was created with a lifetime of five seconds.

During its five second lifetime the first rule pattern ``foo'' was successfully matched twice and the
action statement for the first rule executed twice.

At the end of its lifetime, context FOO_CONTEXT expired, which is noted by the SEC informative
debug output ``Deleting stale context 'FOO_CONTEXT'''.

After the context expired, the first rule is no longer successfully triggered, even though ``foo'' is
matched, because context FOO_CONTEXT no longer exists.

Contexts are one of the most powerful features of SEC. It is possible to develop complex and intricate
event correlation scenarios by combining pattern matching, context creation and manipulation, and
actions.

4.1.2 create Action Lists
As shown above, contexts themselves can have an action list that is part of the create statement. The
action list is a list of any SEC permissible actions.

Action lists on the create statement are executed when the context expires. This allows for contexts to
perform actions just before they disappear. The next example shows this usage.

Copy the following to C4.1.02.conf:

Example C4.1.02.conf
Context example.
Write action if context named FOO_CONTEXT exists.
Create context with second rule, matching 'bar'
#

type=Single
ptype=RegExp
pattern=foo
context=FOO_CONTEXT
desc=$0
action=write - context exists, writing foo here

type=Single
ptype=RegExp
pattern=bar
desc=$0
action=create FOO_CONTEXT 10 (write - Context FOO_CONTEXT is ending; write -
Goodbye...;)

This configuration is almost identical to C4.1.01.conf with the exception of an action list on the
create statement. When context FOO_CONTEXT expires after 10 seconds, it performs two write
actions.

Run with:

% perl sec.pl -conf=C4.1.02.conf -input=-

Output looks like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.1.02.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C4.1.02.conf
2 rules loaded from C4.1.02.conf
foo
foo
foo
bar
Creating context 'FOO_CONTEXT'
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
foo
Writing event 'context exists, writing foo here' to file -
context exists, writing foo here
Deleting stale context 'FOO_CONTEXT'

Writing event 'Context FOO_CONTEXT is ending' to file -
Context FOO_CONTEXT is ending
Writing event 'Goodbye...' to file -
Goodbye...
^C

Just before context FOO_CONTEXT ended, its action list was executed, resulting in the two write
statement sending their text to standard output. Without the informative debug output, the results look
like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.1.02.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C4.1.02.conf
foo
foo
foo
bar
foo
context exists, writing foo here
foo
context exists, writing foo here
Context FOO_CONTEXT is ending
Goodbye...
^C

4.2 Other Actions Pertaining To Contexts
So far, contexts have been used as simple boolean operators- they exist or they do not exist. Contexts
have an additional, very useful feature- they can store events. This makes them ideal for event
reporting.

Context parameters, such as the lifetime and the action list can also be changed. The context name
however, can not be changed.

This section presents additional actions that are useful in manipulating contexts.

4.2.1 Set
set <name> <time> [<action list>]

set is used to change the settings for a context. The context identified by name must already exist. Use
set to change the time and/or the action list for the context.

Typically, a simple context will be created with create which will be later set with the desired lifetime
and action list. Below is an example:

Copy the following to C4.2.01.conf:

Example C4.2.01.conf
Context example.
Create context with second rule, matching 'bar'
Use set action to extend life of context with first rule.
#

type=Single
ptype=RegExp
pattern=foo

context=FOO_CONTEXT
desc=$0
action=write - setting context FOO_CONTEXT lifetime to 10 seconds at %t; \
 set FOO_CONTEXT 10 (write - Context FOO_CONTEXT died at %t)

type=Single
ptype=RegExp
pattern=bar
desc=$0
action=create FOO_CONTEXT; write - creating context FOO_CONTEXT;

Run with the -debug=4 parameter to skip the informative output:

% perl sec.pl -conf=C4.2.01.conf -input=- -debug=4

Output looks like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.2.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C4.2.01.conf
foo
foo
bar
creating context FOO_CONTEXT
foo
setting context FOO_CONTEXT lifetime to 10 seconds at Mon Nov 17 22:37:17 2003
foo
setting context FOO_CONTEXT lifetime to 10 seconds at Mon Nov 17 22:37:21 2003
foo
setting context FOO_CONTEXT lifetime to 10 seconds at Mon Nov 17 22:37:24 2003
foo
setting context FOO_CONTEXT lifetime to 10 seconds at Mon Nov 17 22:37:29 2003
foo
setting context FOO_CONTEXT lifetime to 10 seconds at Mon Nov 17 22:37:35 2003
Context FOO_CONTEXT died at Mon Nov 17 22:37:46 2003
^C

This example creates a context (with the second rule) then keeps extending the lifetime of the context
(with the first rule) to 10 seconds every time the first rule is triggered. Only when there is no more
``foo'' input does the context finally expire.

4.2.2 Add and Report
add <name> [<event text>]

report <name> [<shellcmd>]

The add action adds an event to a context. The context parameters do not change, only the contents of
the context. Think of the context as a box- add adds events as they occur to the box. Other actions in
this section (delete, fill,report, copy,and empty) operate on the contents of that box.

While its nice to have the capability to add events to a context, its necessary to have a way to get them
out. The report action can be used to list the contents of a context through a system command
(shellcmd). SEC runs the named shellcmd (subject to normal user permissions) and passes the content
of the context to standard input of the command.

The following example creates a context (MY_CONTEXT), adds events to it, and reports the contents
with /bin/cat.

The first attempt is shown in C4.2.02.conf:

Example C4.2.02.conf
Rule 1: create context MY_CONTEXT
Rule 2: Add to context MY_CONTEXT
Rule 3: report context MY_CONTEXT
Third rule reports context
#

Pattern 'CreateMe' creates the action
type=Single
ptype=RegExp
pattern=CreateMe
continue=TakeNext
desc=$0
action=create MY_CONTEXT

Anything else gets added to context 'MY_CONTEXT'
type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=add MY_CONTEXT $0

Pattern 'ReportMe' executes the report action
type=Single
ptype=RegExp
pattern=ReportMe
context=MY_CONTEXT
desc=$0
action=report MY_CONTEXT /bin/cat

When run, this attempt looks like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.2.02.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C4.2.02.conf
3 rules loaded from C4.2.02.conf
CreateMe
Creating context 'MY_CONTEXT'
Adding event 'CreateMe' to context 'MY_CONTEXT'
line one
Adding event 'line one' to context 'MY_CONTEXT'
line two
Adding event 'line two' to context 'MY_CONTEXT'
ReportMe
Adding event 'ReportMe' to context 'MY_CONTEXT'
ReportMe
Adding event 'ReportMe' to context 'MY_CONTEXT'
???
Adding event '???' to context 'MY_CONTEXT'
^C

What is happening in this case is that the pattern match for rule 2 ``(.*)'' is swallowing the input
``ReportMe'' before it gets to the third rule.

A possible fix is to add continue=TakeNext to rule 2:

Anything else gets added to context 'MY_CONTEXT'
type=Single
ptype=RegExp
pattern=(.*)
continue=TakeNext
desc=$0
action=add MY_CONTEXT $0

This produces:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.2.02.conf -input=-

Simple Event Correlator version 2.1.11
Reading configuration from C4.2.02.conf
3 rules loaded from C4.2.02.conf
CreateMe
Creating context 'MY_CONTEXT'
Adding event 'CreateMe' to context 'MY_CONTEXT'
line one
Adding event 'line one' to context 'MY_CONTEXT'
line two
Adding event 'line two' to context 'MY_CONTEXT'
ReportMe
Adding event 'ReportMe' to context 'MY_CONTEXT'
Reporting the event store of context 'MY_CONTEXT' through shell command '/bin/cat'
Child 2180 created for command '/bin/cat'
CreateMe
line one
line two
ReportMe
^C

This works, but the ``CreateMe'' and ``ReportMe'' input ends up in the context and itself is
reported.

A bit more elegant solution is to reverse the order of rules 2 and 3. And now, no
continue=TakeNext is needed:

Example C4.2.02.conf
Rule 1: create context MY_CONTEXT
Rule 2: report context MY_CONTEXT
Rule 3: Add to context MY_CONTEXT
Third rule reports context
#

Pattern 'CreateMe' creates the action
type=Single
ptype=RegExp
pattern=CreateMe
desc=$0
action=create MY_CONTEXT

Pattern 'ReportMe' executes the report action
type=Single
ptype=RegExp
pattern=ReportMe
context=MY_CONTEXT
desc=$0
action=report MY_CONTEXT /bin/cat

Anything else gets added to context 'MY_CONTEXT'
type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=add MY_CONTEXT $0

Without the informative debug statements the output is:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.2.02.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C4.2.02.conf
CreateMe
line one
line two
ReportMe
line one
line two
^C

This example highlights the fact that rule order can be important in SEC.

The last example in this section highlights a very common use of SEC- match patterns, keep various
patterns in different contexts, and report those patterns; either ``on demand'' as in this example, or
though a context action (Section 4.1.2). The SEC Manual Page provides an excellent example of
capturing FTP transactions and reporting on those actions. See the section on the Single rule.

4.2.3 Fill
fill <name> [<event text>]

The fill action was introduced in SEC version 2.1.11.. This action behaves like add with one important
difference- the context is emptied before the event text is added.

Copy the following to C4.2.03.conf:

Example C4.2.03.conf
Rule 1: create context MY_CONTEXT
Rule 2: report context MY_CONTEXT
Rule 3: 'fill' action clears context
Rule 4: add to context MY_CONTEXT
#

Pattern 'CreateMe' creates the action
type=Single
ptype=RegExp
pattern=CreateMe
desc=$0
action=create MY_CONTEXT

Pattern 'ReportMe' executes the report action
type=Single
ptype=RegExp
pattern=ReportMe
context=MY_CONTEXT
desc=$0
action=report MY_CONTEXT /bin/cat

Pattern 'FillMe' executes fill action- clears context and
adds text specified
type=Single
ptype=RegExp
pattern=FillMe
desc=$0
action=fill MY_CONTEXT fill executed

Anything else gets added to context 'MY_CONTEXT'
type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=add MY_CONTEXT $0

Run without informative debug:

% perl sec.pl -conf=C4.2.03.conf -input=- -debug=4

Output looks similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.2.03.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C4.2.03.conf
CreateMe
line one
line two
ReportMe
line one
line two

http://www.estpak.ee/~risto/sec/sec.pl.html

line three
line four
ReportMe
line one
line two
line three
line four
FillMe
line five
line six
ReportMe
fill executed
line five
line six
^C

As shown above, the fill action clears out the context. If the event text is not given, %s (the ``desc''
parameter) is assumed for it's value. The next matching event will be added to the context immediately
after any text included with the fill action.

4.2.4 Delete
delete <name>

The delete action simply deletes the context. Happily, if the context doesn't exist no operation is
performed. Just as in perl, there is no harm in undefining a variable that doesn't exist.

To see the effect of this action, copy the following to C4.2.04.conf:

Example C4.2.04.conf
Rule 1: create context MY_CONTEXT
Rule 2: report context MY_CONTEXT
Rule 3: 'delete' action deletes context
Rule 4: add to context MY_CONTEXT
#

Pattern 'CreateMe' creates the action
type=Single
ptype=RegExp
pattern=CreateMe
desc=$0
action=create MY_CONTEXT

Pattern 'ReportMe' executes the report action
type=Single
ptype=RegExp
pattern=ReportMe
context=MY_CONTEXT
desc=$0
action=report MY_CONTEXT /bin/cat

Pattern 'DeleteMe' executes delete action- deletes context
type=Single
ptype=RegExp
pattern=DeleteMe
desc=$0
action=delete MY_CONTEXT

Anything else gets added to context 'MY_CONTEXT'
type=Single
ptype=RegExp
pattern=(.*)
desc=$0
action=add MY_CONTEXT $0

Run without informative debug:

% perl sec.pl -conf=C4.2.04.conf -input=- -debug=4

The output should look similar to:

pb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.2.04.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C4.2.04.conf
CreateMe
line one
line two
line three
ReportMe
line one
line two
line three
DeleteMe
ReportMe
DeleteMe
ReportMe
^C

4.2.5 Copy
copy <name> %<letter>

The copy action takes the contents of a context and assigns it to a SEC letter variable. In previous
versions of SEC, there was no way to access the contents of a context from inside SEC. The only way
was to run report, or shellcmd actions which feed context content to external programs.

This can be useful for determining current state in a complex set of events. Suppose that there were
several motors used in an experiment, each one sending state information such as ``ON'' ``OFF'',
``SLOWSPEED'', ``FASTSPEED'', etc. to a central console. As the experiment proceeds and the motors
change state, it is now possible to get the current state (and all previous states) into a single variable.

4.3 Perl Mini-Programs
Introduced in Section 4, perl mini-programs are a feature designed to provide additional flexibility in
rule matching. Instead of a checking for a fixed context name or being concerned with context content,
perl mini-programs are evaluated by the perl eval command and the results returned to SEC. A non-
zero return results in the context being TRUE, and any action statement is executed.

The mini-program feature allows an external 'program' to determine whether an matched string should
be processed. Consider the following example:

Example C4.3.01.conf
Mini-program examples
Use mini-program to determine if matching string should
be processed.
This mini-program returns true if a randomly generated
number is between 5 and 9.
#

type=Single
ptype=RegExp
pattern=bar
desc=$0
context= =({(int rand(10) >= 5)})

action=write - mini-program was true this time

Copy the above to C4.3.01.conf.

Run this example with:

% perl sec.pl -conf=C4.3.01.conf -input=-

Output will look similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.3.01.conf -input=-
Simple Event Correlator version 2.1.11
Reading configuration from C4.3.01.conf
1 rules loaded from C4.3.01.conf
bar
Writing event 'mini-program was true this time' to file -
mini-program was true this time
bar
bar
Writing event 'mini-program was true this time' to file -
mini-program was true this time
bar
bar
bar
Writing event 'mini-program was true this time' to file -
mini-program was true this time
bar
Writing event 'mini-program was true this time' to file -
mini-program was true this time
bar
bar
bar
bar
Writing event 'mini-program was true this time' to file -
mini-program was true this time
bar
Writing event 'mini-program was true this time' to file -
mini-program was true this time
bar
bar
^C

4.4 Calendar Rules and Contexts
The calendar rule (discussed previously in Section 3.2.8) is similar to the Unix cron utility. Calendar
rules are often used with contexts. A frequent question is how to set up SEC to understand the notion of
``Business Hours'' and ``Off Hours''. One solution might be:

type=Calendar
time=0 6 * * *
desc=BUSINESS_HOURS
action=create %s 54000 (create OFF_HOURS 32400)

This solution creates context BUSINESS_HOURS at 6:00am every morning that lasts for fifteen hours
(54000 seconds), they creates context OFF_HOURS which lasts for nine hours (32400 seconds).
Unfortunately, this solution doesn't take weekends into account, and more importantly, it only works if
SEC happens to be running at precisely 6:00am.

A more robust solution actually takes three rules- one to set BUSINESS_HOURS every minute
between 6:00am - 8:59pm, M-F; and set OFF_HOURS 9:00pm - 5:59am M-F and all day Saturday and
Sunday:

Business Hours- applies 6:00am - 8:59pm, M-F
Off hours - 9:00pm - 5:59am M-F and all day Sat and Sun.
Set every minute by the calendar rules below
See crontab(5)
#
Three calendars are needed since calendar is run every minute
and we don't actually know when SEC will be started (or restarted)
#
#
Calendar Rule 1- set BUSINESS_HOURS
type=Calendar
time=* 6-20 * * 1,2,3,4,5
desc=BUSINESS_HOURS
context=!BUSINESS_HOURS
action=create %s;\
 write - Switched to Business Hours;\
 delete OFF_HOURS;

Calendar Rule 2- set OFF_HOURS during M-F
type=Calendar
time=* 0-5,21-23 * * *
context=!OFF_HOURS
desc=OFF_HOURS
action=create %s;\
 write - Switched to Off Hours;\
 delete BUSINESS_HOURS;

Calendar Rule 3- set OFF_HOURS during Sat,Sun
type=Calendar
time=* * * * 6,7
context=!OFF_HOURS
desc=OFF_HOURS
action=create %s;\
 write - Switched to Off Hours;\
 delete BUSINESS_HOURS;

On startup, this rule set will write to standard out:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=C4.4.01.conf -input=- -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from C4.4.01.conf
Switched to Business Hours
^C

At the appropriate time SEC will shuffle it's contexts and write ``Switched to Off Hours'' or
``Switched to Business Hours'' to standard output.

5 Applications to Logfile Monitoring
SEC excels at logfile monitoring. With an appropriate set of rules, SEC can be configured to monitor
logfiles for a single host, a small group of systems, or a whole enterprise. And since rules are simply
text files, any time a new rule is needed it can be quickly developed and added to SEC on the fly.

This section begins with some simple logging entries, examines some typical problems and solutions,
then explores issues of robustness, and scalability. The configurations in this section have been
developed for BSD systems, but the basic principles can be applied to any Unix system. In Part Two of
this article, there is also a section on monitoring Windows security event logs.

Important: Before beginning to monitor logfiles, first make sure you are allowed to do so!
If you are using your own system, or are already the system administrator for your system,
fine. Otherwise, obtain permission from your system administrator before mucking around
in logfiles.

5.1 Logfile Monitoring Examples
To begin, login as a normal user and deliberately fail a privilege escalation to root:

% su -
Password: (deliberately type a wrong password)

Next, examine your logfile (/var/log/messages on most BSD systems) for the logged
notification:

Nov 18 09:37:38 jpb-lt su: BAD SU jpb to root on /dev/ttyp3

A SEC rule to pick up this logfile entry is:

Bad su

#
type=Single
ptype=RegExp
desc=$0
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+su: BAD SU (\S+) to (\S+) on (\S+)
action=write - $2 failed SU to $3 on $1 at %t

Save the above rule as L01.conf and run with:

% perl sec.pl -conf=L01.conf -input=/var/log/messages

Leave the above command running in one screen, and in another screen or terminal session, try to
deliberately fail an su command as noted above.

Output should be similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=L01.conf -input=/var/log/messages
Simple Event Correlator version 2.1.11
Reading configuration from L01.conf
1 rules loaded from L01.conf
Writing event 'jpb failed SU to root on jpb-lt at Tue Nov 18 10:21:36 2003' to file
-
jpb failed SU to root on jpb-lt at Tue Nov 18 10:21:36 2003

SEC has successfully detected a bad su to root.

Depending on your level of paranoia, you may decide that you can use a SingleWithThreshold rule to
allow for some fat on the fingers.

5.1.1 Monitoring SEC Notifications
There are two problems with the above examples. The first is that by using the write action, all we have
done is replaced one logging mechanism with another. Using write to generate a new logfile, or even to
write to standard output, is equivalent to syslog. We haven't gained anything.

A partial solution is to move to an 'interrupt' method of notification. In the above example, the write
action can be replaced with an action to email the system administrator using the pipe action:

action=pipe '$2 failed SU to $3 on $1 at %t' /usr/bin/mailx -s "LoginFailure"
root@localhost

Output now looks like:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=L01.conf -input=/var/log/messages
Simple Event Correlator version 2.1.11
Reading configuration from L01.conf
1 rules loaded from L01.conf
Feeding event 'jpb failed SU to root on jpb-lt at Sat Nov 22 13:24:16 2003' to
shell command '/usr/bin/mailx -s "LoginFailure" root@localhost'
Child 1053 created for command '/usr/bin/mailx -s "LoginFailure" root@localhost'

The email message contains the completed text with all backreferences filled in:

Date: Sat, 22 Nov 2003 13:24:16 -0500 (EST)
From: "Jim B." <jpb@jpb-lt>
To: root@jpb-lt
Subject: LoginFailure

jpb failed SU to root on jpb-lt at Sat Nov 22 13:24:16 2003

The second problem is that this doesn't scale well. There is no aggregation of event data. It's quite
common for email and paging notification systems to be turned off in large organizations because there
are simply too many notifications- too many pages and emails. Unless there is some sort of aggregation
and/or filtering mechanism, pages and emails are likely to be ignored.

A solution to this problem is presented in Part Two of this article.

5.2 Using SEC with Syslog on BSD Systems
In order to use SEC to process syslog messages, we first need to decide which messages we want to
monitor. Below is a small collection of syslog messages organized into various categories.

This collection contains entries that are generally security related. There are many other syslog entries
in the BSD kernel, system, and user programs. A more comprehensive collection will be used in Part
Two of this article,

5.2.1 MONITOR Rules
The MONITOR group of syslog messages concerns syslogd itself, and messages that infer that
promiscuous mode has been enabled. The syslog messages for the MONITOR group are:

Logs involving syslogd disabled or unusual promiscuous mode (MONITOR)
--
Nov 15 20:02:48 foohost syslogd: exiting on signal 15
Nov 22 02:00:02 foohost syslogd: restart
Nov 11 15:58:55 foohost /kernel: de0: promiscuous mode enabled
Nov 11 15:58:57 foohost /kernel: de0: promiscuous mode disabled

SEC rules for the MONITOR group are as follows:

MONITOR.conf - SEC rules to pick up disruptive monitoring
events.
#
#Logs involving syslogd disabled or unusual promiscuous mode (MONITOR)
#--
#Nov 15 20:02:48 foohost syslogd: exiting on signal 15
#Nov 22 02:00:02 foohost syslogd: restart
#Nov 11 15:58:55 foohost /kernel: de0: promiscuous mode enabled
#Nov 11 15:58:57 foohost /kernel: de0: promiscuous mode disabled
#

#
Syslog Exit

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+syslogd: exiting on signal (\d+)
desc=$0
action=write - MONITOR: $1 syslog exit on signal $2 at %t

#
Syslog Restart

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+syslogd: restart
desc=$0
action=write - MONITOR: $1 syslog restart at %t

#
Syslog Exit

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: (\S+) promiscuous mode (\S+)
desc=$0
action=write - MONITOR: $1 $2 promiscuous mode $3 at %t

Copy the above syslog entries to MONITOR.txt.

5.2.2 PHYSMOD Rules
The PHYSMOD group concerns messages that infer that physical modifications have been performed
on the host such as a new PCMCIA card, or that a cable has been disconnected. The syslog messages
for the PHYSMOD group are:

Logs involving physical modifications (PHYSMOD)
--
Nov 14 21:11:19 foohost /kernel: pccard: card inserted, slot 0
Nov 14 22:28:09 foohost /kernel: pccard: card removed, slot 0
Nov 12 19:46:31 foohost /kernel: de0: link down: cable problem?

Nov 12 19:46:42 foohost /kernel: de0: autosense failed: cable problem?
Oct 18 06:26:37 foohost pccardd[49]: ep0: 3Com Corporation (/3C589/) inserted.
Oct 18 06:26:42 foohost pccardd[49]: pccardd started

Copy the above syslog entries to PHYSMOD.txt.

SEC rules for the PHYSMOD group are:

PHYSMOD.conf - Events concerning physical modifications
to the system.
#
#
#Logs involving physical modifications (PHYSMOD)
#--
#Nov 14 21:11:19 foohost /kernel: pccard: card inserted, slot 0
#Nov 14 22:28:09 foohost /kernel: pccard: card removed, slot 0
#Nov 12 19:46:31 foohost /kernel: de0: link down: cable problem?
#Nov 12 19:46:42 foohost /kernel: de0: autosense failed: cable problem?
#Oct 18 06:26:37 foohost pccardd[49]: ep0: 3Com Corporation (/3C589/) inserted.
#Oct 18 06:26:42 foohost pccardd[49]: pccardd started
#

#
PCMCIA Card Insertion, Removal

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: pccard: card (\S+), slot (\d+)
desc=$0
action=write - PHYSMOD: $1 pccard: card $2 in slot $3 at %t

#
PCMCIA Card Daemon

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+pccardd\[\d+\]: (.*)
desc=$0
action=write - PHYSMOD: $1 pccardd: $2 at %t

#
Cabling Problem

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+/kernel: (\S+)\s+(.*?:) cable problem
desc=$0
action=write - PHYSMOD: $1 cable problem on $2, text: $3 at %t

5.2.3 USERACT Rules
The USERACT group concerns messages that are relevant to user activity, such as login failures or
change of userid. The syslog messages for the USERACT group are:

Logs involving logins, change of UID and privilege escalations (USERACT)

Nov 14 12:14:58 foohost sshd[3388]: fatal: Timeout before authentication for
192.168.1.1
Nov 14 19:58:34 foohost sshd[6597]: Bad protocol version identification
'^B^S^D^Q^L' from 192.168.1.100
Nov 15 04:02:24 foohost login: 1 LOGIN FAILURE ON ttyp2
Nov 15 04:02:24 foohost login: 1 LOGIN FAILURE ON ttyp2, mysql
Oct 18 02:52:04 foohost login: ROOT LOGIN (root) ON ttyv1
Oct 18 03:20:46 foohost login: 2 LOGIN FAILURES ON ttyv0
Nov 10 19:40:03 foohost su: jpb to root on /dev/ttyp0
Nov 18 09:37:38 foohost su: BAD SU jpb to root on /dev/ttyp3
Nov 22 12:26:44 foohost su: BAD SU badboy to root on /dev/ttyp0

Oct 18 06:11:11 foohost login: login on ttyv0 as root
Oct 18 06:16:53 foohost sshd[131]: Accepted keyboard-interactive/pam for jpb from
192.168.1.1 port 1077 ssh2
Nov 14 12:55:29 foohost sshd[3425]: Accepted keyboard-interactive/pam for jpb from
fe80::2c0:4fff:fe18:13fd%ep0 port 27492 ssh2

Copy the above syslog entries to USERACT.txt.

SEC rules for the USERACT group are:

USERACT.conf - Events concerning user activities.
#
#Logs involving logins, change of UID and privilege escalations (USERACT)
#---
#Nov 14 12:14:58 foohost sshd[3388]: fatal: Timeout before authentication for
192.168.1.1
#Nov 14 19:58:34 foohost sshd[6597]: Bad protocol version identification
'^B^S^D^Q^L' from 192.168.1.100
#Oct 18 06:16:53 foohost sshd[131]: Accepted keyboard-interactive/pam for jpb from
192.168.1.1 port 1077 ssh2
#Nov 14 12:55:29 foohost sshd[3425]: Accepted keyboard-interactive/pam for jpb from
fe80::2c0:4fff:fe18:13fd%ep0 port 27492 ssh2
#Nov 15 04:02:24 foohost login: 1 LOGIN FAILURE ON ttyp2
#Nov 15 04:02:24 foohost login: 1 LOGIN FAILURE ON ttyp2, mysql
#Oct 18 03:20:46 foohost login: 2 LOGIN FAILURES ON ttyv0
#Oct 18 02:52:04 foohost login: ROOT LOGIN (root) ON ttyv1
#Oct 18 06:11:11 foohost login: login on ttyv0 as root
#Nov 10 19:40:03 foohost su: jpb to root on /dev/ttyp0
#Nov 18 09:37:38 foohost su: BAD SU jpb to root on /dev/ttyp3
#Nov 22 12:26:44 foohost su: BAD SU badboy to root on /dev/ttyp0
#

#
sshd Problems

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+sshd\[\d+\]: (fatal|Bad)(.*)
desc=$0
action=write - USERACT: $1 sshd $2 problem, text: $3 at %t

#
sshd Accepted

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+sshd\[\d+\]: Accepted (.*)
desc=$0
action=write - USERACT: $1 sshd accepted login, text: $2 at %t

#
login FAILURES

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+login: (.*?FAILURE.)(.*?ON) (.*)
desc=$0
action=write - USERACT: $1 login $2 on $4 at %t

#
su bad

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+su: (BAD SU) (\S+) to (\S+) on (\S+)
desc=$0
action=write - USERACT: $1 su: $2 $3 to $4 on $5 at %t

#Nov 10 19:40:03 foohost su: jpb to root on /dev/ttyp0
#Nov 18 09:37:38 foohost su: BAD SU jpb to root on /dev/ttyp3
#Nov 22 12:26:44 foohost su: BAD SU badboy to root on /dev/ttyp0
#
#
su good to root

#
type=Single
ptype=RegExp
pattern=\S+\s+\d+\s+\S+\s+(\S+)\s+su: (\S+) to root on (\S+)
desc=$0
action=write - USERACT: $1 su: $2 to ROOT on $4 at %t

5.3 Testing The Rule Set
Testing the SEC rule set for the above three groups of rules is accomplished by running SEC with all
three configuration files and dumping the collection of syslog entries into SEC's input.

Use the following command line to test the rule sets:

% perl sec.pl -conf=MONITOR.conf \
 -conf=PHYSMOD.conf \
 -conf=USERACT.conf \
 -input=SEC.test \
 -debug=4

This command sets up SEC.test as SEC's input file. Create an empty SEC.test and run the above
command. Then, in a separate window or terminal session, perform the following command:

% cat MONITOR.txt PHYSMOD.txt USERACT.txt >> SEC.test

Check SEC's output against the rules for any missing matches on input. The results will look similar to:

jpb@jpb-lt:~/SEC-examples$perl sec.pl -conf=MONITOR.conf \
> -conf=PHYSMOD.conf \
> -conf=USERACT.conf \
> -input=SEC.test \
> -debug=4
Simple Event Correlator version 2.1.11
Reading configuration from MONITOR.conf
Reading configuration from PHYSMOD.conf
Reading configuration from USERACT.conf
MONITOR: foohost syslog exit on signal 15 at Sat Nov 22 17:44:07 2003
MONITOR: foohost syslog restart at Sat Nov 22 17:44:07 2003
MONITOR: foohost de0: promiscuous mode enabled at Sat Nov 22 17:44:07 2003
MONITOR: foohost de0: promiscuous mode disabled at Sat Nov 22 17:44:07 2003
PHYSMOD: foohost pccard: card inserted in slot 0 at Sat Nov 22 17:44:07 2003
PHYSMOD: foohost pccard: card removed in slot 0 at Sat Nov 22 17:44:07 2003
PHYSMOD: foohost cable problem on de0:, text: link down: at Sat Nov 22 17:44:07
2003
PHYSMOD: foohost cable problem on de0:, text: autosense failed: at Sat Nov 22
17:44:07 2003
PHYSMOD: foohost pccardd: ep0: 3Com Corporation (/3C589/) inserted. at Sat Nov 22
17:44:07 2003
PHYSMOD: foohost pccardd: pccardd started at Sat Nov 22 17:44:07 2003
USERACT: foohost sshd fatal problem, text: : Timeout before authentication for
192.168.1.1 at Sat Nov 22 17:44:07 2003
USERACT: foohost sshd Bad problem, text: protocol version identification
'^B^S^D^Q^L' from 192.168.1.100 at Sat Nov 22 17:44:07 2003
USERACT: foohost login 1 LOGIN FAILURE on ttyp2 at Sat Nov 22 17:44:07 2003
USERACT: foohost login 1 LOGIN FAILURE on ttyp2, mysql at Sat Nov 22 17:44:07 2003
USERACT: foohost login 2 LOGIN FAILURES on ttyv0 at Sat Nov 22 17:44:07 2003
USERACT: foohost su: jpb to ROOT on $4 at Sat Nov 22 17:44:07 2003
USERACT: foohost su: BAD SU jpb to root on /dev/ttyp3 at Sat Nov 22 17:44:07 2003
USERACT: foohost su: BAD SU badboy to root on /dev/ttyp0 at Sat Nov 22 17:44:07
2003
USERACT: foohost sshd accepted login, text: keyboard-interactive/pam for jpb from
192.168.1.1 port 1077 ssh2 at Sat Nov 22 17:44:07 2003
USERACT: foohost sshd accepted login, text: keyboard-interactive/pam for jpb from
fe80::2c0:4fff:fe18:13fd%ep0 port 27492 ssh2 at Sat Nov 22 17:44:07 2003

^C

Once you are satisfied, run the following command to monitor syslog message on your BSD logfile,
/var/log/messages:

% perl sec.pl -conf=MONITOR.conf \
 -conf=PHYSMOD.conf \
 -conf=USERACT.conf \
 -input=/var/log/messages \
 -debug=4

Until we have a more comprehensive approach to correlating events you may wish to keep the action
statements limited to simple write actions shown in the above rules. If you do decide to use email or
paging for your actions (as shown in Section 5.1.1), test on a small subset of rules first.

Use the -detach to put the SEC monitoring application in the background:

% perl sec.pl -conf=MONITOR.conf \
 -conf=PHYSMOD.conf \
 -conf=USERACT.conf \
 -input=/var/log/messages \
 -debug=4 \
 -detach

6 Part One Conclusion
In this article, we've looked at SEC, the Simple Event Correlator, from Risto Vaarandi. Using perl
regular expression patterns along with SEC rule types and actions, we have examined how SEC works,
and how to create and use rule sets for logfile monitoring.

In Part Two, we will expand on these rules, and provide more meaningful event correlation. We will
also build a relational data base around SEC and use it to categorize and report on log entries.

	Working with SEC- the Simple Event Correlator
	Jim Brown

	1 Introduction
	2 Getting Started
	2.1 A Simple Example
	2.2 Other SEC Actions
	2.2.1 write
	2.2.2 shellcmd
	2.2.3 spawn
	2.2.4 assign And eval
	2.2.5 event

	3 SEC In Depth
	3.1 SEC Rule Types
	3.2 More SEC Rule Examples
	3.2.1 SingleWithScript
	3.2.2 SingleWithSuppress
	3.2.3 Pair
	3.2.4 PairWithWindow
	3.2.5 SingleWithThreshold
	3.2.6 SingleWith2Threshds
	3.2.7 Suppress
	3.2.8 Calendar

	3.3 Multiple Input Streams
	3.4 Pipe Output

	4 Using Contexts
	4.1 Simple Context Example
	4.1.1 Context Lifetimes
	4.1.2 create Action Lists

	4.2 Other Actions Pertaining To Contexts
	4.2.1 Set
	4.2.2 Add and Report
	4.2.3 Fill
	4.2.4 Delete
	4.2.5 Copy

	4.3 Perl Mini-Programs
	4.4 Calendar Rules and Contexts

	5 Applications to Logfile Monitoring
	5.1 Logfile Monitoring Examples
	5.1.1 Monitoring SEC Notifications

	5.2 Using SEC with Syslog on BSD Systems
	5.2.1 MONITOR Rules
	5.2.2 PHYSMOD Rules
	5.2.3 USERACT Rules

	5.3 Testing The Rule Set

	6 Part One Conclusion

